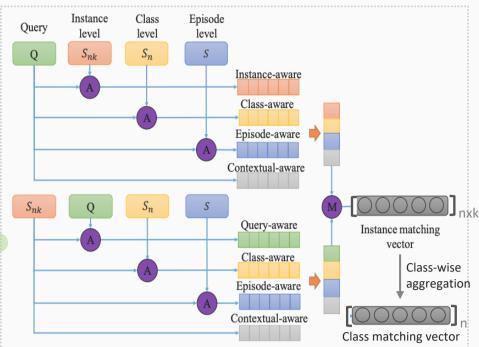


MGIMN: Multi-Grained Interactive Matching Network for Few-shot Text Classification

Jianhai Zhang, Mieradilijiang Maimaiti, Xing Gao, Yuanhang Zheng and Ji Zhang*

Introduction



WHY

- Few-shot classification aims to predict the label of query given on query set and support set with few samples.
 - Constructing a compact prototype of class is challenging-yet-unnecessary. And Inter-dependency between query and support set is much important.

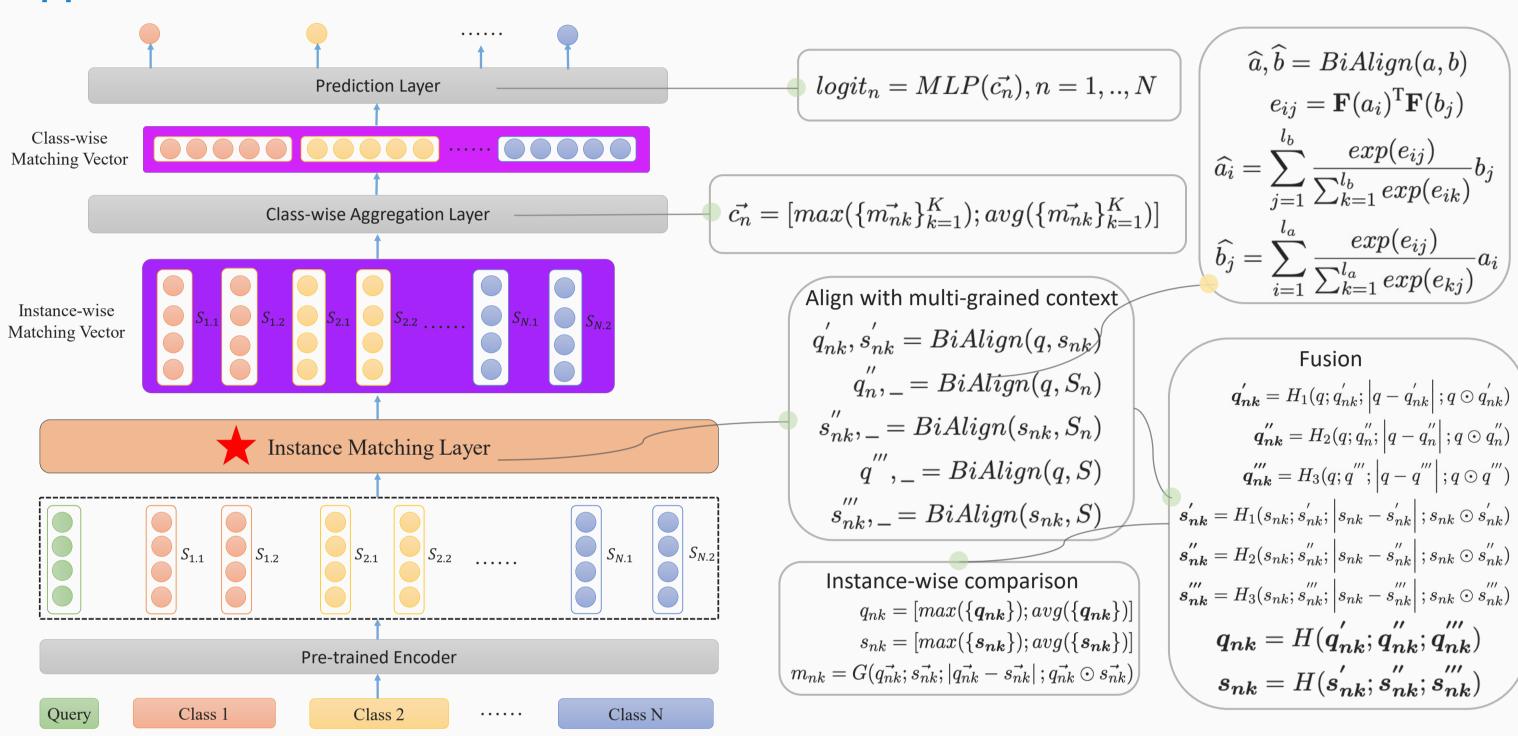
HOW HOW

Perform instance-level comparisons/ (multi-grained interactive matching) followed by class-wise aggregation.

Highlights

 $\underline{\mathbf{O}}$

Propose a new few-shot text classification framework(MGIMN).



State-of-the-art on five different datasets with FSL and GFSL metrics.

Introduce Retrieval-then-classify method to improve the inference performance in realistic scenery.

Approach

$$s_{nk} = H_1(s_{nk}; s_{nk}; |s_{nk} - s_{nk}|; s_{nk} \odot s_{nk})$$

$$s_{nk}'' = H_2(s_{nk}; s_{nk}''; |s_{nk} - s_{nk}''|; s_{nk} \odot s_{nk}'')$$

$$s_{nk}''' = H_3(s_{nk}; s_{nk}''; |s_{nk} - s_{nk}'''|; s_{nk} \odot s_{nk}'')$$

$$q_{nk} = H(q_{nk}'; q_{nk}''; q_{nk}'')$$

$$s_{nk} = H(s_{nk}'; s_{nk}'; s_{nk}'')$$

Dataset Statics

Datasets	Standard	Generalized FSL Setting							_	
Datasets	#sentences	$C_{tr}/C_{val}/C_{test}$	C	Κ	#sc	#uc	$\#D_{tr}$	$\#D_{val}$	$#D_{test}$	_
OOS	22500	50/50/50	150	5	50	100	7000	1250	1250	_
Liu	25478	18/18/18	54	5	18	36	8312	450	450	
Amzn	3057	106/106/106	318	5	106	212	1043	530	530	
Huffpost	41000	14/13/14	41	5	14	27	13860	340	340	
FaqIr	1233	17/16/17	50	5	17	33	309	381	381	

- Standard FSL Setting: Widely used in most studies(Snell et al., 2017 etc.)
- Generalized FSL Setting(GFSL, Nguyen et al., 2020 etc.) : A more challengingyet-realistic evaluation method. In this setting, we reform task a C-way K-shot classification in which only subset of classes are seen in training phase.

Experiments

Main	Experiments)

	OOS			Liu			FaqIr		
Methods	5-way	10-way	GFSL	5-way	10-way	GFSL	5-way	10-way	GFSL
Proto	92.20	87.91	61.94	82.46	73.23	47.66	89.83	81.56	60.78
Matching	89.78	84.41	58.34	78.25	67.45	41.95	86.74	78.77	53.85
Induction	80.44	70.92	34.00	65.58	51.56	24.73	71.62	56.99	20.10
Proto-HATT	92.84	89.11	65.52	82.38	75.29	51.27	85.01	76.17	62.62
MLMAN	95.99	93.41	74.39	87.39	79.82	57.24	94.77	89.49	74.42
MGIMN(ours)	96.36	94.00	76.23	87.84	80.60	57.66	95.14	90.69	75.81

Methods	Amzn			Methods	Huffpost			
Methous	5-way	10-way	GFSL	wiethous	5-way	10-way	GFSL	
Proto	78.40	69.02	41.03	Proto	51.57	36.74	16.47	
Matching	75.73	64.17	38.34	Matching	49.77	34.28	14.18	
Induction	64.02	50.12	20.09	Induction	44.69	29.35	10.40	
Proto-HATT	78.05	69.00	41.81	Proto-HATT	51.23	36.65	16.06	
MLMAN	85.64	79.39	46.71	MLMAN	52.76	38.22	16.78	

Ablation Study

Methods		Liu		Huffpost			
Wieulous	5-way	10-way	GFSL	5-way	10-way	GFSL	
MGIMN(ours)	87.84	80.60	57.66	54.98	40.12	19.61	
w/o episode	86.22	78.99	56.67	54.14	39.53	18.69	
w/o class	84.56	76.89	54.62	54.09	39.10	17.53	
w/o instance	87.74	79.93	57.39	53.65	38.86	18.67	
w/o instance&class&episode	80.53	70.94	42.54	51.81	37.10	16.48	

Retrieval-then-classify

	Lin(c	=50)	005(c=150)	Amzn(c=318)		
Methods	score	speed	score	speed	score	speed	
MGIMN-overall	57.66	315	76.23	757	49.46	1630	
RTC-BM25	54.97	55	74.80	56	44.76	58	
RTC-oribert	52.93	60	70.55	65	31.09	70	
RTC-mgimnbert	56.21	60	75.58	65	46.80	70	

* Processing 100 queries on Intel Core i7 CPUs(ms/query) * Sequence length=20

* All the results are the averaged over 15 runs(different seen-unseen class 365 splits and random seeds)

