



# Domain Adaptation for Machine Translation

Mieradílíjíang Maimaítí 2017-10-26



THUNLP\_MTGroup



## Outline

- Introduction
  - Domain adaptation
  - □ Machine translation
- Domain Adaptation for SMT
  - Self-training
  - Data selection
  - Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work





## □ Introduction

- **D** Domain adaptation
- Machine translation
- Domain Adaptation for SMT
  - Self-training
  - Data selection
  - Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work





## Domain adaptation

## Machine translation









□ Not a well defined notion.

#### Should be based on some concept of textual similarity

- Lexical choice
- **G**rammar
- 🗖 Торіс
- Style
- 🗖 Genre
- Register
- Intent







**Domain Adaptation** (DA) is a field associated with <u>machine</u> <u>learning</u> and <u>transfer learning</u>.



DA is one of the branches of transfer learning.

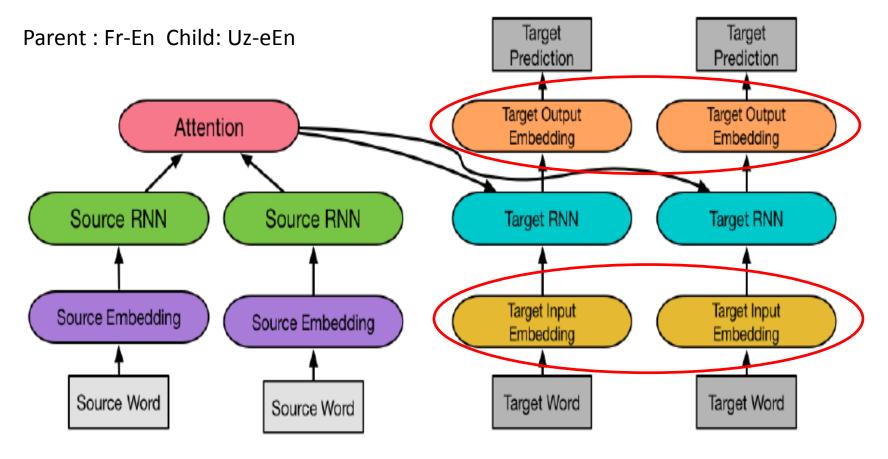
DA build a system on **one kind of data** and **adjust** it to apply to another.







## Optimal setting for transferring from **parent** model to **child** model.

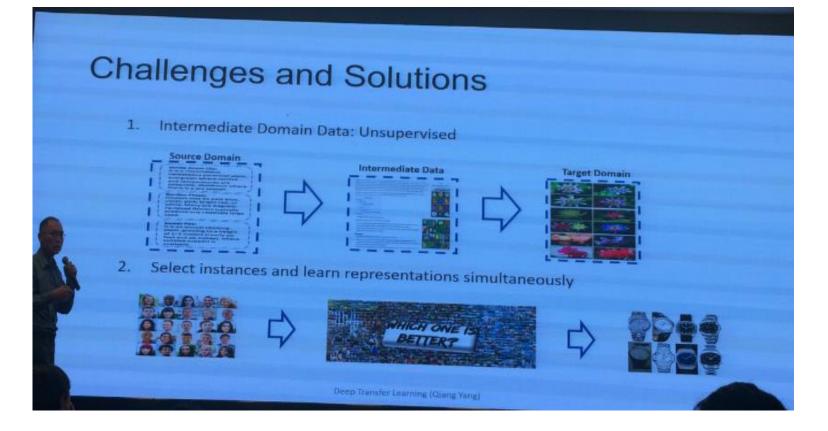


[Barret Zoph et al., 2016]







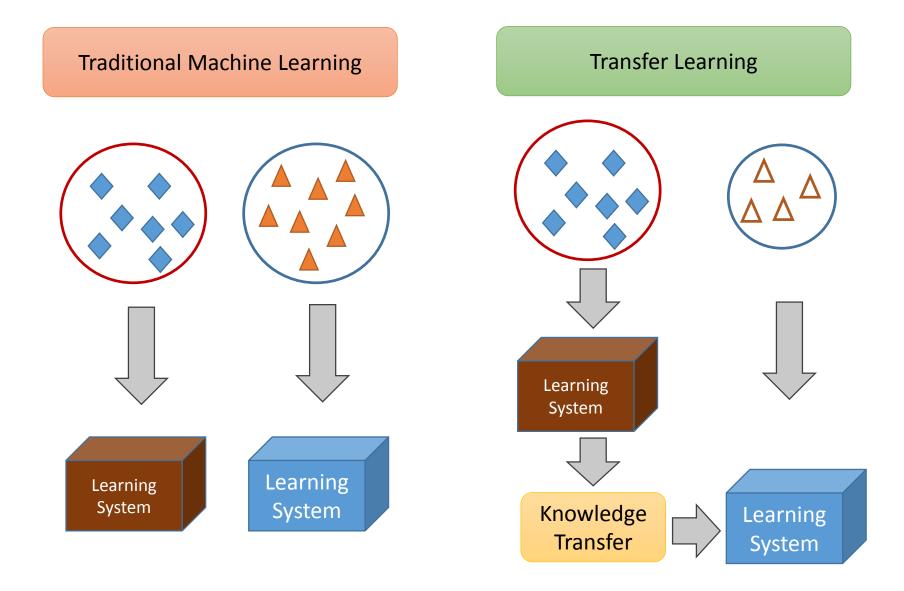


[Qiang Yang, 2017]







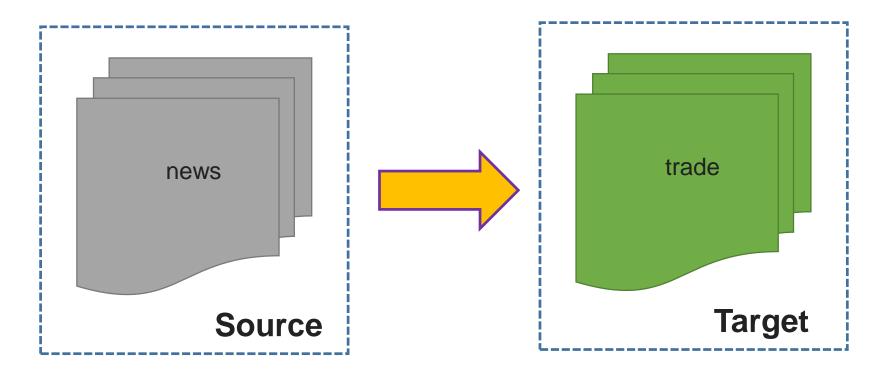


#### THUNLP\_MTGroup





This scenario arises when we aim at learning from a source data distribution a well performing model on a different (but related) target data distribution.









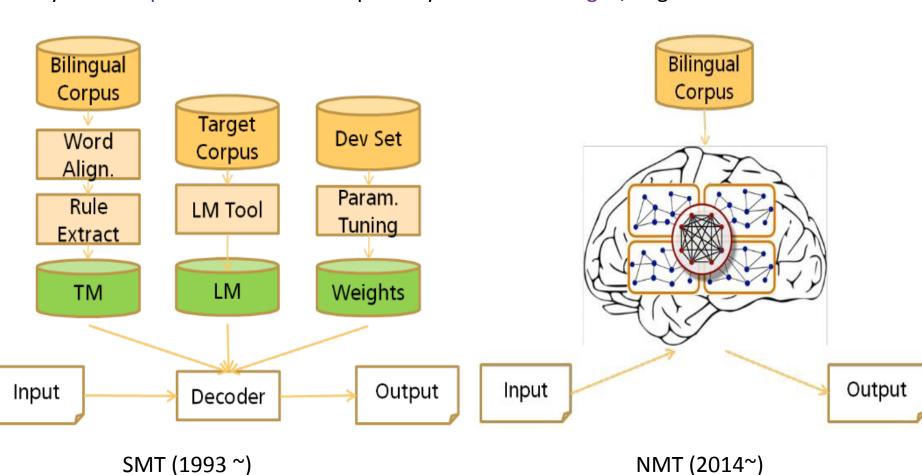
In Natural Language Processing (NLP), train a system on some language data, retune && apply it to specific different task.

Build speech recognition system using recorded phone calls, then tune it to use as an airline reservation hotline.









Many sub-components are tuned separately

single, large neural network

Let's MT!

THUNLP\_MTGroup

2021/6/20 12





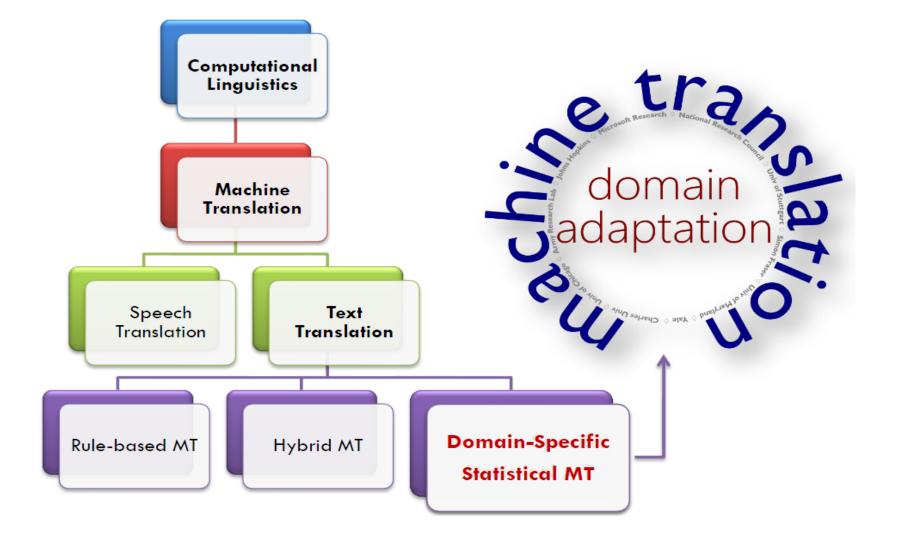
#### Introduction

- **D** Domain adaptation
- Machine translation
- Domain Adaptation for SMT
  - □ Self-training
  - Data selection
  - **D** Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work









[Daniel Jurafsky et al., 2008]









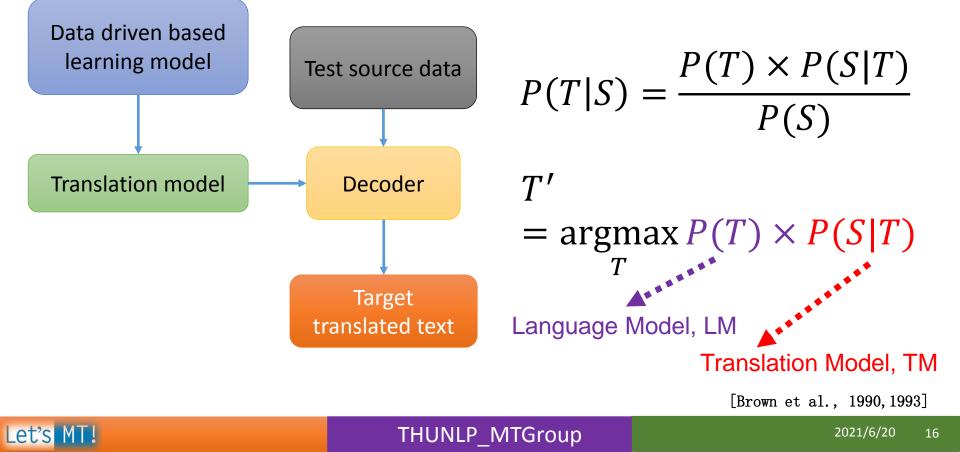
Parallel

corpus

#### **Statistical Machine translation --- Generative Model**

Source sentence:  $S = s_1^m = s_1 s_2 \cdots s_m$ 

Target sentence:  $T = t_1^n = t_1 t_2 \cdots t_n$ 





$$T' = \underset{T}{\operatorname{argmax}} P(T|S)$$

$$= \underset{T}{\operatorname{argmax}} \frac{P(T) \times P(S|T)}{P(S)}$$

$$= \underset{T}{\operatorname{argmax}} P(T) \times P(S|T) \quad \longrightarrow \quad T' = \underset{T}{\operatorname{argmax}} P(T) \times P(T|S)$$

$$\operatorname{Translation quality} \quad \thickapprox \quad \operatorname{Translation quality}$$

$$T' = \underset{T}{\operatorname{argmax}} P(T) \times P(S|T)$$

$$T' = \underset{T}{\operatorname{argmax}} P(T) \times P(T|S)$$

$$\operatorname{Quality} \quad \swarrow \quad \operatorname{Quality}$$

$$\operatorname{Quality} \quad \operatorname{Quality}$$

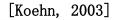
$$\operatorname{Quality} \quad \operatorname{Quality}$$

$$\operatorname{Quality} \quad \operatorname{Quality}$$



Let's MT!

| $T' = \operatorname{argmax} P(T S)$                                                          |         | -4 April -               |
|----------------------------------------------------------------------------------------------|---------|--------------------------|
| $= \operatorname*{argmax}_{T,S_1^K} P(T, S_1^K   S)$                                         |         |                          |
| $= \underset{T,S_{1}^{K},T_{1}^{K},T_{1}^{K'}}{\operatorname{argmax}} P(S_{1}^{K} S) \times$ | <b></b> | Phrase splitting model   |
|                                                                                              |         |                          |
| $P(T_1^K   S_1^K, S) \times$                                                                 | •       | Phrase translation model |
| $P(T_1^{K'} T_1^K, S_1^K, S) \times$                                                         |         | Phrase reordering model  |
| $P(T T_{1}^{K'}, T_{1}^{K}, S_{1}^{K}, S)$                                                   | <b></b> | Target language model    |







- **MT systems** make error in new domains
- OOV words are a big problem
- □ So are words with new senses
- Even known words with known translations can have wrong translation scores.







## **Many words** have multiple senses

- Cross-lingual mapping difficult for all contexts
- □ Senses are often domain specific ?



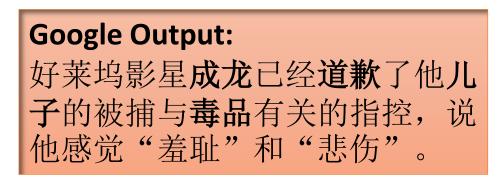




- Typical SMT systems trained on a large and broad corpus (i.e., general-domain) and deal with texts with neglecting domain.
- Depends heavily upon the quality and quantity of training corpus.
- Output preserve semantics of the source side but lack morphological and syntactic correctness.
- Understandable translation quality.

#### Input:

Hollywood actor Jackie Chan has apologized over his son's arrest on drug-related charges, saying he feels "ashamed" and "sad".







#### Is Machine Translation good enough ?

style() (control defined according to the state of t

# Is Machine Translation Good Enough for Your Business?



THUNLP\_MTGroup





#### **Domain-Specific** SMT

systems trained on a small but **relative** corpus (i.e., indomain) and deal with texts from one specific domain.

- Consider relevance between training data and what we want to translate (test).
- Output preserve semantics of the source side morphological and syntactic correctness.

Publishable quality.

#### Input:

本发明涉及**新的**tetramic酸型化 合物,它从CCR-5活性复合物 中分离出来,在控制条件下通过 将生物纯的微生物培养液(球毛 壳霉Kunze SCH 1705 ATCC 74489) 发酵来制备复合物

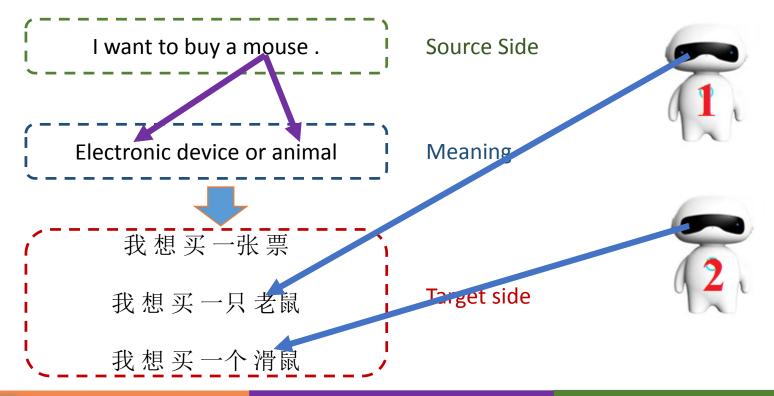
#### **ICONIC Translator Output**:

Novel tetramic acid-type compounds isolated from a CCR-5 active complex produced by fermentation under controlled conditions of a biologically pure culture of the microorganism, Chaetomium globosum Kunze SCH 1705, ATCC 74489 ., pharmaceutical compositions containing the compounds.



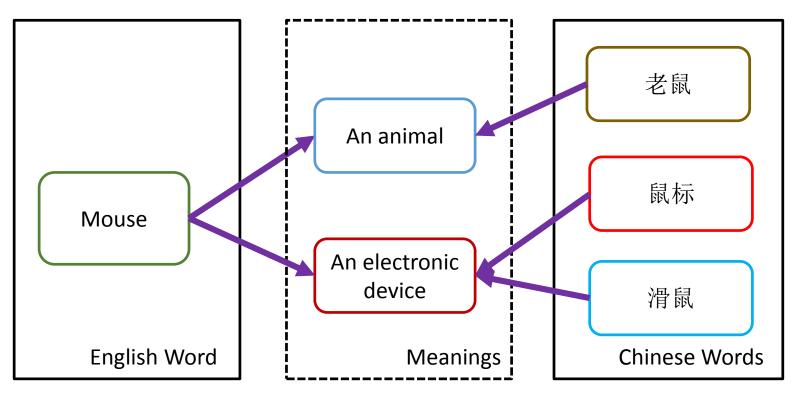


Multi-meaning may not coincide in bilingual environment. The English word *Mouse* refers to both animal and electronic device. While in the Chinese side, they are two words. Choosing wrong translation variants is a potential cause for miscomprehension.





Multi-meaning may not coincide in bilingual environment. The English word *Mouse* refers to both animal and electronic device. While in the Chinese side, they are two words. Choosing wrong translation variants is a potential cause for **miscomprehension**.



#### THUNLP\_MTGroup



#### **News Domain**

- Try to deliver rich information with very economical language.
- Short and simple-structure sentence make it easy to understand
- □ A lot of abbreviation, date, named entities.

China's Li Duihong won the women's 25-meter sport pistol Olympic gold with a total of 687.9 points early this morning Beijing time. (Guangming Daily, 1996/07/02) 我国女子运动员李对红今天在女子运动手枪决赛中,以687.9 环战胜所有对手,并创造新的奥运记录。(《光明日报》 1996年7月2日)





#### Law Domain

- □ Very rigorous even with duplicated terms.
- Use fewer pronouns, abbreviations etc. to avoid any ambiguity.
- □ High frequency words of shall, may, must, be to.
- □ Long sentence with long subordinate clauses.

When an international treaty that relates to a contract and which the People's Republic of China has concluded on participated into has provisions of the said treaty shall be applied, but with the exception of clauses to which the People's Republic of China has declared reservation. 中华人民共和国缔结或者参加的与合同有关的国际条约同中华人民共和国法律有不同规定的,适用该国际条约的规定。但是,中华人民共和国 声明保留的条款除外。





-1911-

Terminology: words or phrases that mainly occur in specific contexts with specific meanings.

□ Variants, increasing, combination etc.









#### DA can be done by model level

- Alignment model
- Language model
- Translation model
- Reordering model
- DA can also be achieved corpus level
  - **D** Dictionary
  - Comparable corpora
  - Parallel corpora
  - Monolingual corpora
- **D** DA approaches can be decided into:
  - Unsupervised
  - Semi-Supervised
  - Supervised





## □ Self-training

- Data selection
- Data weighting
- Context based
- Topic based





## Domain Adaptation for Statistical Machine Translation with Monolingual Resources

#### Nicola Bertoldi Marcello Federico

#### FBK-irst - Ricerca Scientifica e Tecnologica, Italy

EACL2009, Workshop on SMT





M CN CH

The basic idea is that in-domain training data can be exploited to adapt all components of an already developed system. Previous work showed small performance gains by adapting from limited in-domain bilingual data.

We propose to synthesize a bilingual corpus by **translating(**with a background system) the monolingual adaptation data into the counterpart language and **train** statistical models form the synesthetic corpus.

$$S = \{ (\tilde{f}, \tilde{e}) \} \quad h(\tilde{f}, \tilde{e}; S)$$

$$S_{I} = \left\{ \left( \tilde{f}, \tilde{e} \right) | \forall j(\tilde{f}, \tilde{e}) \in S_{j} \right\}$$

$$S_U = \left\{ \left( \tilde{f}, \tilde{e} \right) | \exists j(\tilde{f}, \tilde{e}) \in S_j \right\}$$



Let's MT!

$$h(\tilde{f}, \tilde{e}; S_j) = \frac{\epsilon}{(l+1)^m} \prod_{k=1}^m \sum_{h=0}^l \emptyset(e_k | f_h)$$

| Language pair   | Trainir             | ng data             | PP   | 00V  | BLEU  | NIST | WER   | PER   |
|-----------------|---------------------|---------------------|------|------|-------|------|-------|-------|
|                 | TM/RM               | LM                  |      |      |       |      |       |       |
| Spanish-English | UN                  | UN                  | 286  | 1.12 | 22.60 | 6.51 | 64.60 | 45.52 |
| Spanish-English | UN                  | EP                  | 74   | 0.15 | 27.83 | 7.12 | 60.93 | 45.19 |
| Spanish-English | EP                  | EP                  | 74   | 0.15 | 32.80 | 7.84 | 56.47 | 41.15 |
| Spanish-English | UN                  | $S\overline{E}$ -EP | 89   | 0.21 | 23.52 | 6.64 | 63.86 | 47.68 |
| Spanish-English | $S\overline{E}$ -EP | $S\overline{E}$ -EP | 89   | 0.21 | 23.68 | 6.65 | 63.64 | 47.56 |
| Spanish-English | <i>Š</i> E−EP       | <i>Ŝ</i> Ε-ΕΡ       | 74   | 0.15 | 28.10 | 7.18 | 60.86 | 44.85 |
| Spanish-English | Goo                 | ogle                | Null | Null | 28.60 | 7.55 | 57.38 | 57.38 |
| Spanish-English | Euror               | natrix              | Null | Null | 32.99 | 7.86 | 56.36 | 41.12 |
| Spanish-English | UN                  | UN                  | 281  | 1.39 | 23.24 | 6.44 | 65.81 | 49.61 |





## Exploiting N-best Hypotheses for SMT Self-Enhancement

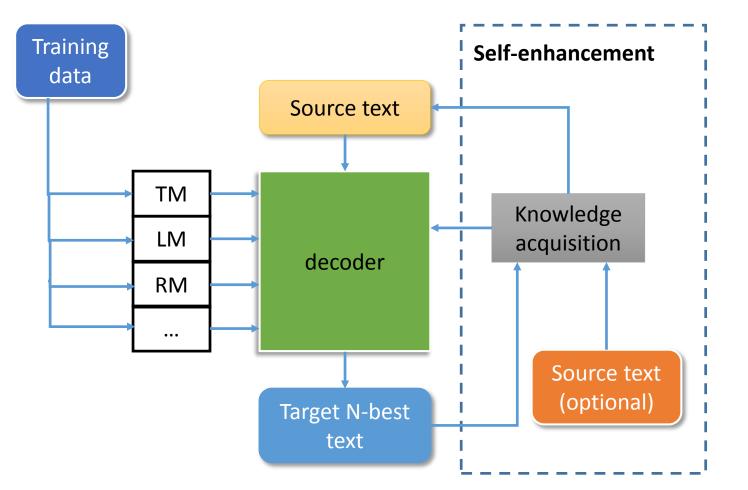
Boxing Chen Min Zhang Aiti Aw Haizhou Li

Department of Human Language Technology, Institute for information Research, Singapore

ACL2008











$$h_{LM}(f_1^J, e_1^I) = \lambda_1 h_{TLM}(e_1^I) + \lambda_2 h_{QLM}(e_1^I)$$

$$p(\tilde{e}|\tilde{f}) = \frac{N_{train}(\tilde{f},\tilde{e}) + N_{nbest}(\tilde{f},\tilde{e})}{N_{train}(\tilde{f}) + N_{nbest}(\tilde{f})}$$

| System | iteration | NIST02 | NIST03 | NIST05 |
|--------|-----------|--------|--------|--------|
| Base   | -         | 27.67  | 26.68  | 24.82  |
| TM     | 4         | 27.87  | 26.95  | 25.05  |
| LM     | 6         | 27.96  | 27.06  | 25.07  |
| WR     | 6         | 27.99  | 27.04  | 25.11  |
| Comb   | 7         | 28.45  | 27.35  | 25.46  |

Self enhancement on TM,LM,WR(word reordering model),combination







# Investigations on Large-Scale Lightly-Supervised Training for Statistical Machine Translation

Holger Schwenk

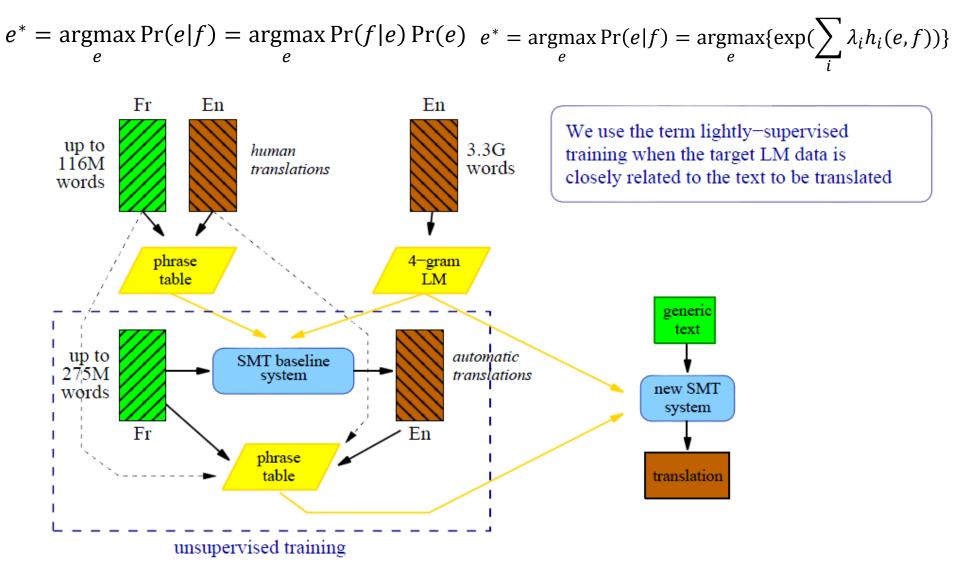
LIUM, University of Le Mans, FRANCE

IWSLT2008





Investigations on Large-Scale Lightly-Supervised Training for Statistical Machine Translation







| В                       |                    | Total | BLEU score |       | Phrase table |                 |      |
|-------------------------|--------------------|-------|------------|-------|--------------|-----------------|------|
| Human-provided          | Lightly-supervised |       | Words      | Dev   | Test         | Size [#entries] |      |
| News+dict               | 2.4M               |       |            |       | 20.44        | 20.18           | 5M   |
| News+Eparl+dict         | 43M                |       | -          | 43.3M | 22.17        | 22.35           | 83M  |
| News+Eparl+Hans+dict    | 116M               |       |            | 116M  | 22.69        | 22.17           | 213M |
| Translated with the sma | ystem:             |       |            |       |              |                 |      |
| News                    |                    | ofpoy | 28M        | 2.4M  | 21.21        | 21.02           | 58M  |
|                         | 2.4M               | afp9x | 101M       | 2.4M  | 21.23        | 21.18           | 189M |
|                         |                    | afp2x | 43M        | 2.4M  | 20.98        | 21.01           | 77M  |
|                         |                    |       | 102M       | 2.4M  | 21.23        | 21.17           | 170M |
|                         |                    | Deent | 7M         | 2.4M  | 20.78        | 20.65           | 17M  |
|                         |                    | Eparl | 31M        | 2.4M  | 21.14        | 20.86           | 67M  |
| Translated with the big | SMT sys            | tem:  |            |       |              |                 |      |
|                         |                    | afa). | 31M        | 31M   | 22.23        | 22.33           | 55M  |
| -                       |                    | afp2x | 112M       | 112M  | 22.56        | 22.47           | 180M |
| News+Eparl              | 42M                | afp2x | 77M        | 129M  | 22.65        | 22.44           | 203M |
| INCWSTEPall             | 42M                | aip2x | 155M       | 197M  | 22.53        | 22.73           | 320M |
| News+Eparl+Hans         | 114M               | afp2x | 167M       | 281M  | 22.86        | 22.80           | 464M |







Selecting data suitable for the domain at hand from large **general**domain corpora, under the **assumption** that a **general corpus** is broad enough to contain sentences that are similar to those that occur in the domain.

- Do not change the pipeline, improve the input.
- □ Not all sentence are equally valuable...
- **D** For particular translation task:
  - Identify the most relevant training data
  - Build a model on only this subset
- **G**oal:
  - Better task-specific performance
  - □ Cheaper (computation, size, time)





# Intelligent Selection of Language Model Training Data

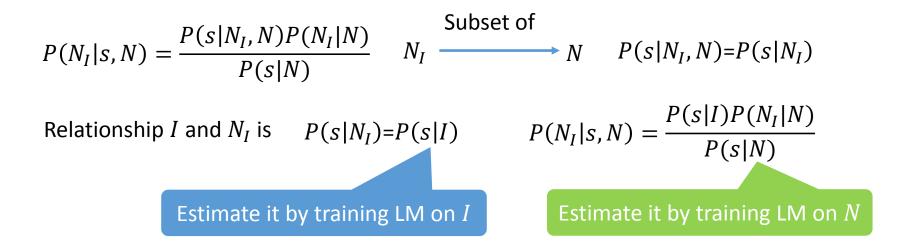
Robert C. Moore William Lewis

Microsoft Research, USA

ACL2011

| Let's | MT! |
|-------|-----|
|-------|-----|





 $H_I(s)$  Per word corss-entropy according to LM on I, text segment s drown from N

 $H_N(s)$  Per word corss-entropy according to LM on N

Partition N into segments (sentences), according to  $H_I(s)$ - $H_N(s)$  score segments.

 $\log(P(s|I)) - \log(P(s|N)) \approx H_I(s) - H_N(s)$ 



| Corpus         | Sentence country | Token count   |
|----------------|------------------|---------------|
| Gigaword       | 133,310,562      | 3,445,946,266 |
| Europarl train | 1,651,392        | 48,230,859    |
| Europarl test  | 2,000            | 55,566        |

| Selection Method                 | Original LM PPL | Modified LM PPL |
|----------------------------------|-----------------|-----------------|
| In-domain cross-entropy scoring  | 124.4           | 124.8           |
| Klakow's method                  | 110.5           | 110.8           |
| Cross-entropy difference scoring | 100.7           | 101.9           |







# Improving Statistical Machine Translation Performance by Training Data Selection and Optimization

Yajuan Lü, Jin Huang and Qun Liu

Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences

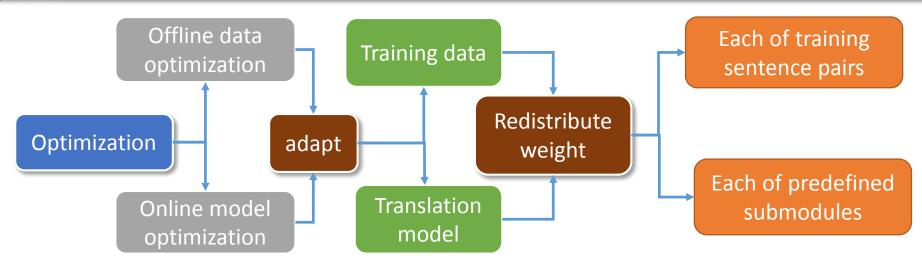
EMNLP2007





Let's MT!

## Improving SMT Performance by Training Data Selection and Optimization



Online model weighting

$$\hat{p}(e|c) = p_0(e|c)^{\delta_0} \times \prod_{i=1}^M p_i(e|c)^{\delta_i}$$

 $\hat{e} = \underset{e}{\operatorname{argmax}} (\delta_0 \log(p_0(e|c)) + \sum_{i=1}^M \delta_i \log(p_i(e|c)))$ 

 $p_0$  and  $p_i$  are general model and submodule  $\delta_0$  and  $\delta_i$  are weights

#### Similar data selection by TF-IDF

$$D_i = (W_{i1}, W_{i2}, \cdots, W_{in})$$

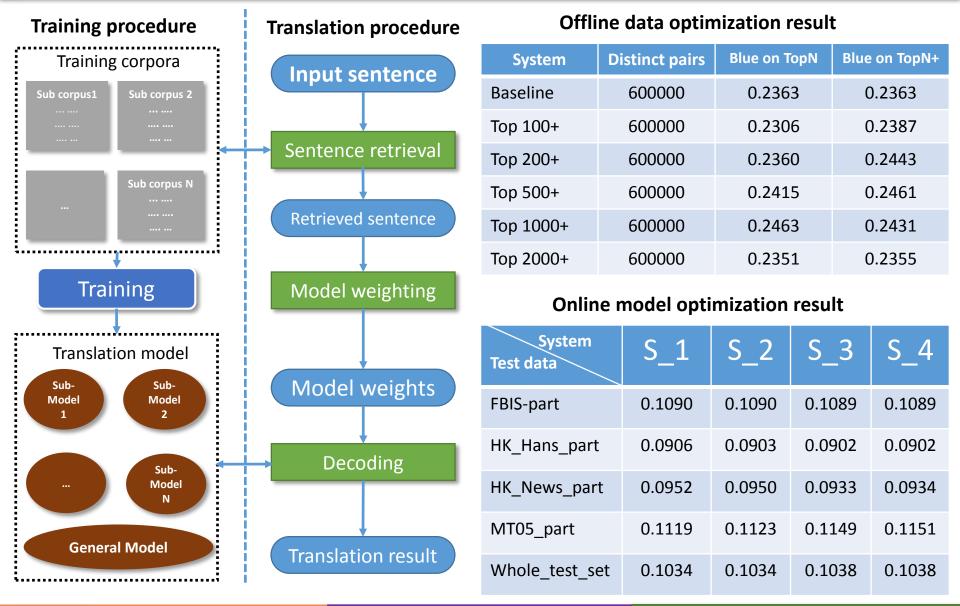
**Vocabulary size =** *n* 

$$W_{ij} = tf_{ij} \times \log(idf_j)$$



Let's MT!

## Improving Statistical Machine Translation Performance by Training Data Selection and Optimization



THUNLP MTGroup





# Domain Adaptation via Pseudo In-Domain Data Selection

#### Amittai Axelrod, Xiaodong He, Jianfeng Gao

University of Washington && Microsoft Research

EMNLP2011



**Perplexity-based model**, which employs *n*-gram in-domain language models to score the perplexity of each sentence in general-domain corpus.

**Cross-entropy** is the average of the negative logarithm of the word probabilities.

$$H(p,q) = -\sum_{i=1}^{n} p(w_i) \log q(w_i) = -\frac{1}{N} \sum_{i=1}^{n} \log q(w_i)$$

**Perplexity** pp can be simply transformed with a base b with respect to which the cross-entropy is measured.

$$pp = b^{H(p,q)}$$

Perplexity and cross-entropy are monotonically related







# The first **basic** one $H_{I-src}(\mathbf{x})$

The second is called Moore-Lewis  $H_{I-src}(x) - H_{O-src}(x)$ 

which tries to select the sentences that are more similar to indomain but different to out-of-domain.

The third is modified Moore-Lewis

$$[H_{I-\operatorname{src}}(\mathbf{x}) - H_{O-\operatorname{src}}(\mathbf{x})] + [H_{I-tgt}(\mathbf{x}) - H_{O-tgt}(\mathbf{x})]$$

which considers both source and target language



Let's MT!

#### Concatenating in-domain and pseudo [single Model]

Concatenating in-domain and pseudo [together]

| Method              | sentences | Dev   | Test  | Method                        | Dev   | Test  |
|---------------------|-----------|-------|-------|-------------------------------|-------|-------|
| IWSLT               | 30K       | 45.43 | 37.17 | IWSLT                         | 45.43 | 37.17 |
| Bilingual M-L       | 35k       | 39.59 | 42.31 | General                       | 42.62 | 40.51 |
| Bilingual M-L       | 70k       | 40.84 | 42.29 | Both IWSLT, General           | 49.13 | 42.50 |
| Bilingual M-L       | 150k      | 42.64 | 42.22 | IWSLT, Bilingual M-L 35k      | 48.51 | 40.38 |
| IWSLT+Bilingual M-L | 35k       | 47.71 | 41.78 | IWSLT, Bilingual M-L 70k      | 49.65 | 40.45 |
| IWSLT+Bilingual M-L | 70k       | 47.80 | 42.30 | IWSLT, Bilingual M-L 150k     | 49.50 | 41.40 |
| IWSLT+Bilingual M-L | 150k      | 48.44 | 42.01 | IWSLT,IWSLT+Bilingual M-L 35k | 48.85 | 39.82 |
|                     |           |       |       | IWSLT,IWSLT+Bilingual M-L 70k | 49.10 | 43.00 |

IWSLT, IWSLT+Bilingual M-L 150k

43.23

49.80





# Mixture-Model Adaptation for SMT

George Foster and Roland Kuhn

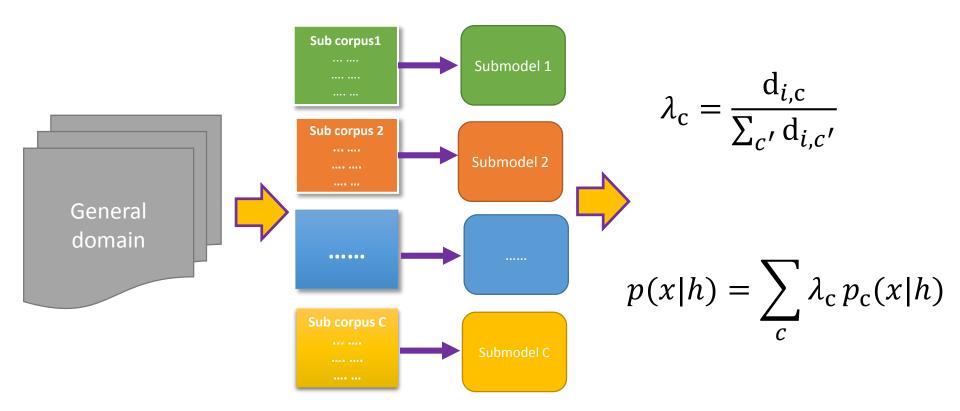
National Research Council Canada

ACL2007









Distance Metrics for Weighting : tf/idf , LSA, perplexity, EM



THUNLP\_MTGroup



Let's MT!



#### Corpora

Distance matrices for linear combination on dev

| Role  | Corpus      | Genres        | Sent   | Metric      | Src LM                                   | Text LM | Trg LM          | Text LM         |  |  |  |
|-------|-------------|---------------|--------|-------------|------------------------------------------|---------|-----------------|-----------------|--|--|--|
| train | FBIS04      | nw            | 182k   | tf/idf      | 31.3                                     | 31.3    | 31.1            | 31.1            |  |  |  |
|       | HK Hans     | proceedings   | 1,375k | LSA         | 31.5                                     | 31.6    |                 |                 |  |  |  |
|       | HK Laws     | legal         | 475k   | Perplexity  | 31.6                                     | 31.3    | 31.7            | 31.5            |  |  |  |
|       | HK News     | Press release | 740k   | EM          | 31.7                                     | 31.6    | 32.1            | 31.3            |  |  |  |
|       | Newswire    | nw            | 26k    | Source      | Source granularity on dynamic adaptatior |         |                 |                 |  |  |  |
|       | Sinorama    | news mag      | 366k   | Granularity | dev                                      |         |                 |                 |  |  |  |
|       | UN          | Proceedings   | 4,979k |             | Nist04-                                  |         | NELOC           | NINOC           |  |  |  |
| dev   | NIST04-nw   | nw            | 901    |             | mix                                      | nist05  | Nist06-<br>nist | Nist06-<br>gale |  |  |  |
|       | NIST04-mix  | nw,sp,ed      | 889    | Baseline    | 31.9                                     | 30.4    | 27.6            | 12.9            |  |  |  |
| test  | NIST05      | nw            | 1,082  | File        | 32.4                                     | 30.8    | 28.6            | 13.4            |  |  |  |
|       | NIST06-Gale | nw,ng,bn,bc   | 2,276  | Genre       | 32.5                                     | 31.1    | 28.9            | 12.2            |  |  |  |
|       | NIST06-NIST | nw,ng,bn      | 1,664  |             |                                          |         |                 |                 |  |  |  |
|       |             |               |        | Document    | 32.9                                     | 30.9    | 28.6            | 12.4            |  |  |  |







# Perplexity Minimization for Translation Model Domain Adaptation in Statistical Machine Translation

**Rico Sennrich** 

Institute of Computational Linguistics, University of Zurich

EMNLP2012







A weighted combination can control the contribution of the out-of-domain corpus on the probability distribution, and thus limit the ambiguity problem.

A weighted combination eliminates the need for data selection, offering a robust baseline for domain-specific machine translation.

Aim to adapt all features: 
$$p(\bar{t}|\bar{s}) \ p(\bar{s}|\bar{t}) \ lex(\bar{t}|\bar{s}) \ lex(\bar{s}|\bar{t})$$
  
Linear interpolation model:  $p(x|y;\lambda) = \sum_{i=1}^{n} \lambda_i p_i(x|y) \qquad \sum_{i=1}^{n} \lambda_i = 1$   
Weighted counts:  $p(x|y) = \frac{c(x,y)}{c(y)} = \frac{c(x,y)}{\sum_{x'} c(x',y)} \qquad p(x|y;\lambda) = \frac{\sum_{i=1}^{n} \lambda_i c_i(x,y)}{\sum_{i=1}^{n} \sum_{x'} \lambda_i c_i(x,y)}$ 

Perplexity minimization:

$$H(p) = -\sum_{x,y} \tilde{p}(x,y) \log_2 p(x|y)$$
$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmin}} - \sum_{x,y} \tilde{p}(x,y) \log_2 p(x|y;\lambda)$$







|                                 | out-of-domain LM |        | adapted LM |        |      |          |
|---------------------------------|------------------|--------|------------|--------|------|----------|
| System                          | full             | IN TM  | full       | IN TM  | sma  | ll IN TM |
|                                 | Bleu             | METEOR | Bleu       | METEOR | Bleu | METEOR   |
| in-domain                       | 30.4             | 30.7   | 33.4       | 31.7   | 29.7 | 28.6     |
| out-of-domain                   | 24.3             | 28.0   | 28.9       | 30.2   | 28.9 | 30.2     |
| counts (concatenation)          | 30.3             | 31.2   | 33.6       | 32.4   | 31.3 | 31.3     |
| binary in/out                   |                  |        |            |        |      |          |
| weighted counts                 | 31.0             | 31.6   | 33.8       | 32.4   | 31.5 | 31.3     |
| linear interpolation (naive)    | 30.8             | 31.4   | 33.7       | 32.4   | 31.9 | 31.3     |
| linear interpolation (modified) | 30.8             | 31.5   | 33.7       | 32.4   | 31.7 | 31.2     |
| alternative paths               | 30.8             | 31.3   | 33.2       | 32.4   | 29.8 | 30.7     |
| 10 models                       |                  |        |            |        |      |          |
| weighted counts                 | 31.0             | 31.5   | 33.5       | 32.3   | 31.8 | 31.5     |
| linear interpolation (naive)    | 30.9             | 31.4   | 33.8       | 32.4   | 31.9 | 31.3     |
| linear interpolation (modified) | 31.0             | 31.6   | 33.8       | 32.5   | 32.1 | 31.5     |
| alternative paths               | 25.9             | 29.2   | 24.3       | 29.1   | 29.8 | 30.9     |







# Context Adaptation in Statistical Machine Translation Using Models with Exponentially Decaying Cache

JÖrg Tiedemann

Department of Linguistics and Philology, Uppsala University, Uppsala/Sweden

ACL2010







Mix a large global (static) LM with a small local(Dynamic model) estimated from recent items in the history of the input stream.

"They may also have **episodes** of depression . Abilify is used to treat moderate to severe manic **episodes** and to prevent manic **episodes** in patients who have responded to the **medicine** in the past . The solution for injection is used for the rapid control of agitation or disturbed

behavior when taking the **medicine** by mouth is not appropriate .The **medicine** can only be obtained with a prescription ."

| The 10 commandments          | Kerd ma lui           |
|------------------------------|-----------------------|
| To some land flowing with    | Mari honey            |
| milk and honey!              | Mari, gumman          |
| Till ett land fullt av mjölk |                       |
| och honung.                  | Sweetheart, where are |
|                              | you going?            |
| I've never tasted honey.     | Älskling, var ska du? |
| Jag har aldrig smakat ho-    |                       |
| nung.                        | Who was that, honey?  |
|                              | Vem var det, gumman?  |

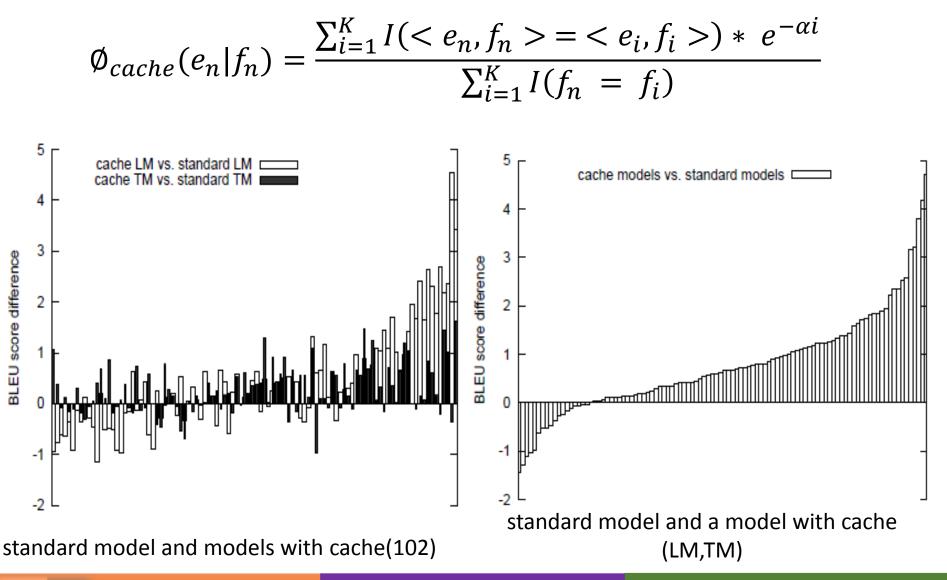
 $P(w_n|history) = (1 - \lambda)P_{n-gram}(w_n|history) + \lambda P_{cache}(w_n|history)$ 

$$P_{cache}(w_n|w_{n-k}...w_{n-1}) \approx \frac{1}{Z} \sum_{i=n-k}^{n-1} I(w_n = w_n) e^{-\alpha(n-i)}$$





**Context Adaptation in SMT Using Models with Exponentially Decaying Cache** 









# A Topic Similarity Model for Hierarchical Phrase-based Translation

Xinyan Xiao Deyi Xiong Min Zhang Qun Liu Shouxun Lin

Institute of Computing Technology, Chinese Academy of Sciences

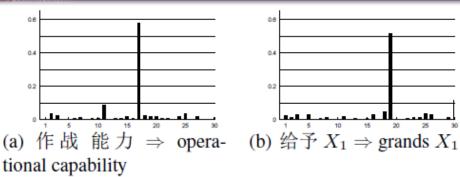
ACL2012

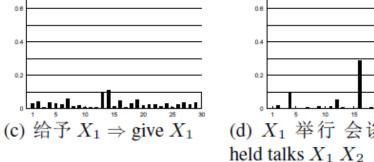




## A Topic Similarity Model for Hierarchical Phrase-based Translation







d) 
$$X_1$$
 举行 会谈  $X_2$  ⇒  
held talks  $X_1 X_2$ 

Similarity 
$$(P(z|d), P(z|r))$$
  

$$= \sum_{k=1}^{K} (\sqrt{P(z=k|d)} - \sqrt{P(z=k|r)})^{2}$$

$$P(z=k|r) = \frac{\sum_{I \in I} c \times P(z=k|d)}{\sum_{k'}^{K} \sum_{I \in I} c \times P(z=k'|d)}$$

$$\sum_{(z_{f}, z_{e}, a)} \sum_{(i,j) \in a} \delta(z_{f_{i}}, k_{f}) * \delta(z_{e_{i}}, k_{e})$$

$$T(P(z_{e}|r)) = P(z_{e}|r) \otimes M_{K_{e} \times K_{f}}$$

Similarity 
$$P(z|r)$$
  
=  $-\sum_{k=1}^{K} P(z=k|r) \times \log(P(z=k|r))$ 

Decoding

Similarity  $(P(z_f|d), P(z_f|r))$ Similarity  $(P(z_f | d), TP(z_e | r))$ Sensitivity  $(P(z_f|r))$ Sensitivity( $TP(z_e|r)$ )



Let's MT!

## A Topic Similarity Model for Hierarchical Phrase-based Translation

| BLEU and speed         | System        | МТ06  | MT08  | Avgerage | Speed |
|------------------------|---------------|-------|-------|----------|-------|
| hierarchical system    | Baseline      | 30.20 | 21.93 | 26.07    | 12.6  |
| topic-specific lexicon | TopicLex      | 30.65 | 22.29 | 26.47    | 3.3   |
| similarity by source   | SimSrc        | 30.41 | 22.69 | 26.55    | 11.5  |
| similarity by target   | SimTgt        | 30.51 | 22.39 | 26.45    | 11.7  |
| two similarity         | SimSrc+SimTgt | 30.73 | 22.69 | 26.71    | 11.2  |
| sensitivity features   | Sim+Sen       | 30.95 | 22.92 | 26.94    | 10.2  |

#### Percentage of topic-sensitive rules

Topic model on three types of rules

| Туре             | Count   | Src% | Tgt% | Туре             | MT06  | MT08  | Avg   |
|------------------|---------|------|------|------------------|-------|-------|-------|
| Phrase-rule      | 3.9M    | 83.4 | 84.4 | Baseline         | 30.20 | 21.93 | 26.07 |
| Monotone-rule    | 19.2M   | 85.3 | 86.1 | Phrase-rule      | 30.53 | 22.29 | 26.41 |
| Monotone-rule    | 13.2101 | 05.5 | 86.1 | Monotone-rule    | 30.72 | 22.62 | 26.67 |
| Reordering –rule | 5.7M    | 85.9 | 86.8 | Reordering –rule | 30.31 | 22.40 | 26.36 |
| All-rule         | 28.8M   | 85.1 | 86.0 | All-rule         | 30.95 | 22.92 | 26.94 |







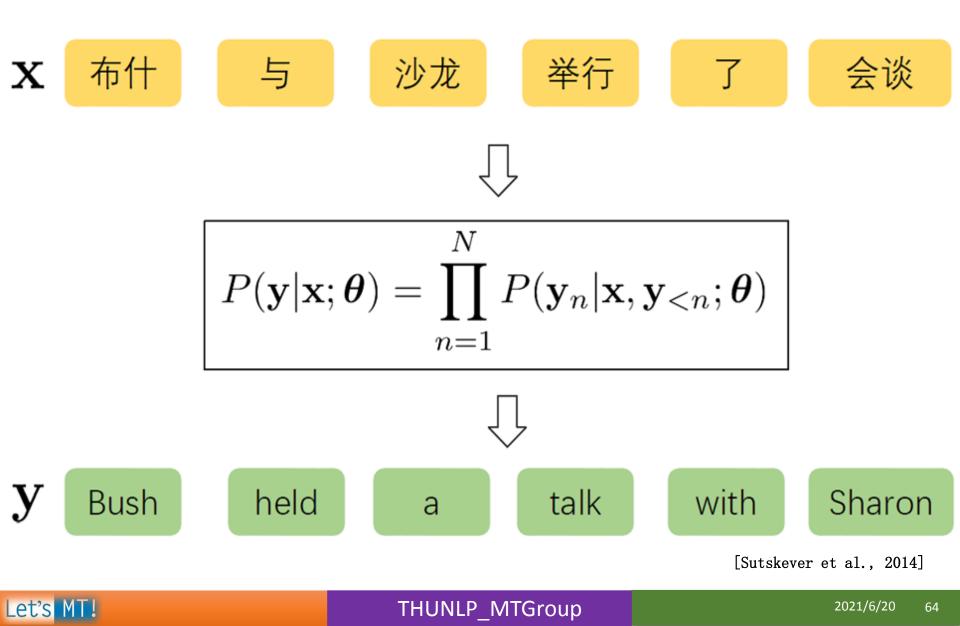
## □ Introduction

- **D** Domain adaptation
- Machine translation
- Domain Adaptation for SMT
  - **D** Self-training
  - Data selection
  - Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work



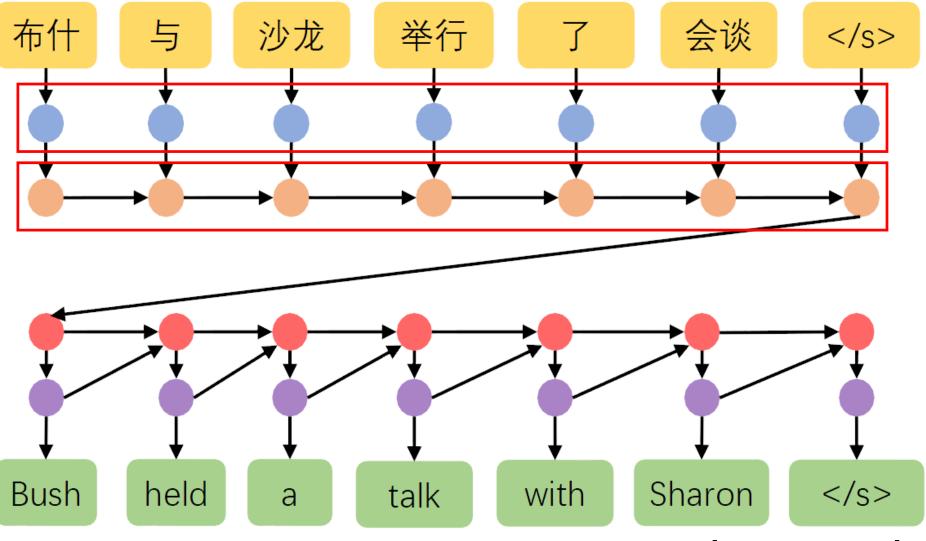










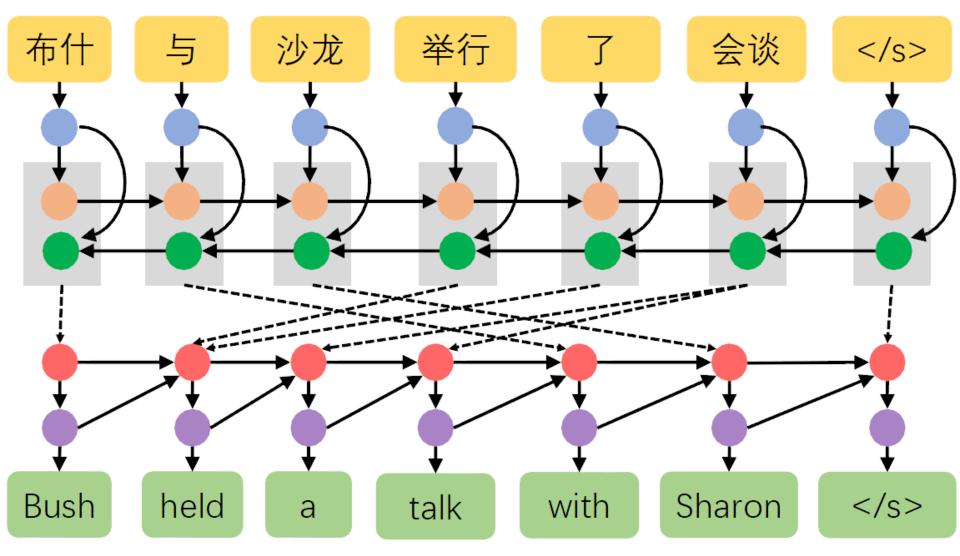


[Sutskever et al., 2014]





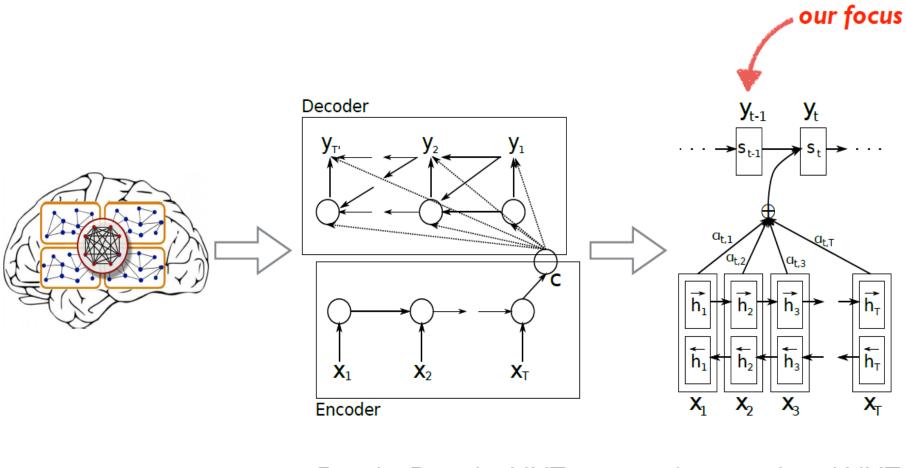




[Bahdanau et al., 2015]







Encoder-Decoder NMT

Cho et al. (2014)

Attention-based NMT Bahdanau et al. (2015)



THUNLP\_MTGroup





# Topic-Informed Neural Machine Translation

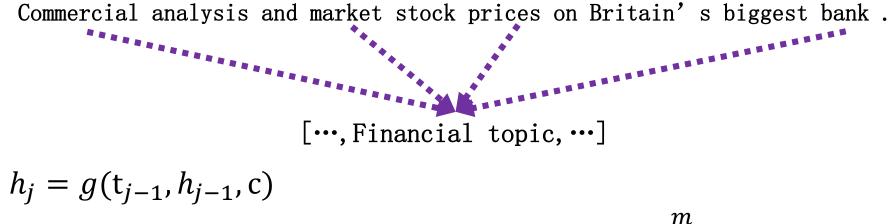
Jian Zhang, Liangyou Li, Andy Way, Qun Liu

ADAPT Centre, School of Computing, Dublin City University, Ireland

COLING2016







Topic-informed source context vector  $topic_c_j = \sum_{i=1}^{m} \alpha_{ij} [h_i, \beta_i^S]$ 

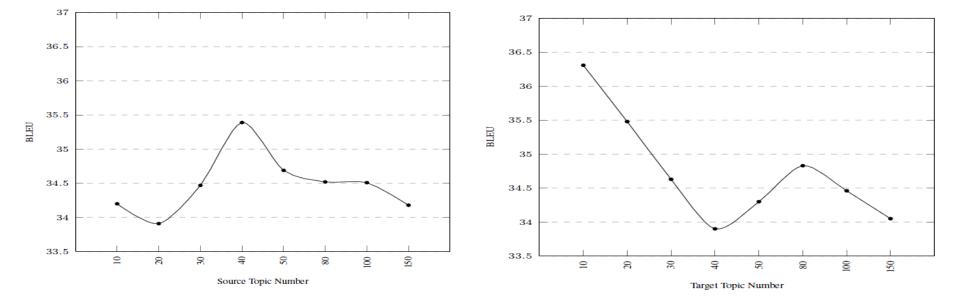
 $h_j = g(t_{j-1}, h_{j-1}, topic_c_j)$   $h_j = g(t_{j-1}, h_{j-1}, c, h_{j-1}^{\beta^T})$ 

$$h_j = g(t_{j-1}, h_{j-1}, topic_c_j, h_{j-1}^{\beta^T})$$



## **Topic-Informed Neural Machine Translation**





| Systems                       | NIST02(dev) | NIST04(test) | NIST05(test) |
|-------------------------------|-------------|--------------|--------------|
| SMT                           | 33.42       | 32.36        | 30.11        |
| NMT                           | 34.33       | 34.76        | 31.12        |
| Source Topic-Informed NMT(40) | 35.39       | 35.17+       | 31.95++      |
| Target Topic-Informed NMT(10) | 36.31       | 35.43++      | 32.50++      |
| Topic-Informed NMT(40,10)     | 34.86       | 35.91++      | 32.79++      |

| Let's MT! THUNLP_MTGroup 2021/0 | 20 | 70 |
|---------------------------------|----|----|
|---------------------------------|----|----|





# Sentence Embedding for Neural Machine Translation Domain Adaptation

Rui Wang, Andrew Finch, Masao Utiyama and Eiichiro Sumita

National Institute of Information and Communications Technology (NICT), Kyoto, Japan

ACL2017





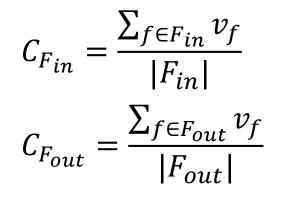
Let's MT!

Source sentence as a fixed length vector H In-domain  $F_{in}$  out-domain  $F_{out}$ 

French-to-English NMT system  $N_{FE}$  trained on  $F_{in}$  and  $F_{out}$  together.

$$s_{init}(X) = \tanh\left(W\frac{\sum_{i=1}^{T_x}h_i}{T_x}+b\right), h_i \in H$$
 Vector centers

Sentence embedding  $v_f = s_{init}(f)$  Euclidean distance  $d(v_f, C_{F_{in}}), d(v_f, C_{F_{out}})$ 



Classify each sentence via difference:  $\delta$ 

$$\begin{split} \delta_{f} &= d(v_{f}, C_{F_{in}}) - d(v_{f}, C_{F_{out}}) \\ \delta_{e} &= d(v_{e}, C_{F_{in}}) - d(v_{e}, C_{F_{out}}) \end{split} \delta_{fe} = \delta_{f} + \delta_{e} \end{split}$$



## Sentence Embedding for NMT Domain Adaptation



IWSLT : EN-FR

NIST : ZH-EN

| Method             | Sent.  | SMT<br>tst10 | SMT<br>tst11 | NMT<br>tst10 | NMT<br>Tst11 | Method             | Sent.  | SMT<br>MT05 | SMT<br>MT06 | NMT<br>MT05 | NMT<br>MT06 |
|--------------------|--------|--------------|--------------|--------------|--------------|--------------------|--------|-------------|-------------|-------------|-------------|
| in                 | 178.1K | 31.06        | 32.50        | 29.23        | 30.00        | in                 | 430.8K | 29.66       | 30.73       | 27.28       | 26.82       |
| out                | 17.7M  | 30.04        | 29.29        | 27.30        | 28.48        | out                | 8.8M   | 29.61       | 30.13       | 28.67       | 27.79       |
| Int+out            | 17.9M  | 30.00        | 30.26        | 28.89        | 28.55        | Int+out            | 9.3M   | 30.23       | 30.11       | 28.91       | 28.22       |
| Random             | 5.5M   | 31.22        | 33.85        | 30.53        | 32.37        | Random             | 5.7M   | 29.90       | 30.18       | 28.02       | 27.49       |
| Luong              | 17.9M  | N/A          | N/A          | 32.21        | 35.03        | Luong              | 9.3M   | N/A         | N/A         | 29.91       | 29.61       |
| Axelrod            | 9.0M   | 32.06        | 34.81        | 32.26        | 35.54        | Axelrod            | 2.2M   | 30.52       | 30.96       | 28.41       | 28.75       |
| Chen               | 7.3M   | 31.42        | 33.78        | 30.32        | 33.81        | Chen               | 4.8M   | 30.64       | 31.05       | 28.39       | 28.06       |
| $\delta_{f}$       | 7.3M   | 31.46        | 33.13        | 32.13        | 34.81        | $\delta_{f}$       | 4.8M   | 30.90       | 31.96       | 29.21       | 30.14       |
| $\delta_e$         | 3.7M   | 32.08        | 35.94        | 32.84        | 36.56        | $\delta_e$         | 2.2M   | 30.94       | 31.33       | 30.00       | 30.63       |
| $\delta_{fe}$      | 5.5M   | 31.79        | 35.66        | 32.67        | 36.64        | $\delta_{fe}$      | 5.7M   | 30.72       | 31.33       | 30.13       | 31.07       |
| $\delta_f$ +fur    | 7.3M   | N/A          | N/A          | 34.04        | 37.18        | $\delta_f$ +fur    | 4.8M   | N/A         | N/A         | 30.80       | 31.54       |
| $\delta_e$ +fur    | 3.7M   | N/A          | N/A          | 33.88        | 38.04        | $\delta_e$ +fur    | 2.2M   | N/A         | N/A         | 30.49       | 31.13       |
| $\delta_{fe}$ +fur | 5.5M   | N/A          | N/A          | 34.52        | 39.02        | $\delta_{fe}$ +fur | 5.7M   | N/A         | N/A         | 31.35       | 31.80       |

Let's MT!

THUNLP\_MTGroup





## □ Introduction

- **D** Domain adaptation
- Machine translation
- Domain Adaptation for SMT
  - Self-training
  - Data selection
  - Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work





# [ This slide intentionally left blank ]



THUNLP\_MTGroup





## □ Introduction

- **D** Domain adaptation
- Machine translation
- Domain Adaptation for SMT
  - □ Self-training
  - Data selection
  - Data weighting
  - Context based
  - **D** Topic based
- Domain Adaptation for NMT
- Our work
- Conclusion && Future work







- As SMT is corpus-driven, domain-specificity of training data with respect to the test data is a significant factor that we cannot ignore.
- There is a mismatch between the domain of available training data and the target domain.
- Unfortunately, the training resources in specific domains are usually relatively scarce.

In such scenarios, various **domain adaptation** techniques are employed to improve domain-specific translation quality by leveraging general-domain data.







# **VSM-based**: cosine tf-idf

- Perplexity-based: basic cross-entropy, Moore-Lewis and modified Moore-Lewis.
- **String-difference**: edit-distance.
- **Combination**: Corpus-level and Model-level

Above methods only consider word itself (surface information).

- Languages have a larger set of different words leads to sparsity problems.
- Weak at capturing language style, sentence structure, sematic information.







# **VSM-based**: cosine tf-idf

- Perplexity-based: basic cross-entropy, Moore-Lewis and modified Moore-Lewis.
- **String-difference**: edit-distance.
- **Combination**: Corpus-level and Model-level

Above methods only consider word itself (surface information).

- Languages have a larger set of different words leads to sparsity problems.
- Weak at capturing language style, sentence structure, sematic information.







# Data Selection

- **G**raphical model and label propagation
- Neural language model
- **D** Sentence embedding
- Context based
- **D** Topic info
- Multi domain
- Corpus
- Model



