
• NMT has made remarkable progress in recent years, but the
performance of NMT suffers from a data sparsity problem
since large-scale parallel corpora are only readily available for
high-resource languages (HRLs).

• Transfer learning (TL) has been used widely in low-resource
languages machine translation; while TL is becoming one of
the vital directions in low-resource (LR) NMT.
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• We address the drawbacks of TL, which exploits only one parent 
to optimize the child model at a time.

• We mitigate the gap between parent and child language pairs at 
the character level.

• Main Idea

• we aim to deal with the problem of how to make full use of 
these corpora of highly related multiple languages, to 
increase the translation quality of the child model.

• Increase the similar even identical words between parent 
and child language by using unified transliteration method.

• Multi round fine-tuning

• The original TL transfers parameters of parent model into
child model.
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• However, leveraging the original TL to LR models is neither
able to make full use of highly related multiple HRLs nor
receive different parameters from the same parents.

• To address this issue, we present a language-independent
multi-round transfer learning (MRTL) which aims to exploit
HRLs effectively. Besides, to reduce the differences between
HRLs and LRLs at the character level, we introduce a unified
transliteration method for various language families.

• We achieve transparency in network architectures, as well as in 
our method for neural network architecture. 

• We observe meaningful discovery by sharing both source side and 
target side embeddings of parent models. 
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• The central idea of our proposed MRTL is to encourage the child
model receive more information from different parent models.
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• Unified transliteration
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