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» Study of data augmentation in natural language
tasks is still very limited.

* Current random transformation methods such as
Swap, Dropout and Blank can result in significant
changes In semantics.

» Recent contextual augmentation methods can not
utilize all potential candidates.

» We propose soft contextual data augmentation
for NMT by leveraging language models, which can
not only keep semantics for source sentences, but
also leverage all possible augmented data.

» Stage-1: First use the same training corpus of the NMT
model to pretrain language models.

» Stage-2: Then randomly choose words in the training
data with probability y and replace it by its soft version
to train one NMT model.

 Overall Results

> IWSLT14 {De, Es, He}->En (transformer_base) and
WMT14 En->De (transformer_big).

IWSLT WMT
De — En Es — En He — En En — De
« We show the architecture of our soft contextual Base 14.70 41.58 33.64 28.40
data augmentation approach in encoder side for +Swap 34.70 41.60 34.25 28.13
source sentences. The decoder side for target +Dropout 35.13 41.62 34.29 28.29
centences i< <imilar +Blank 15.37 4228 34.37 28,80
) +Smaooth 35.45 41.69 3d.61 28.97
+L M 35,40 42,09 34.31 28.73
-~ Ours 35.78 42.61 34.91 29.7()
Table 1: BLEU scores on four translabion tasks.
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Replace Replace » Our method can observe a consistent BLEU
improvement within a large probability range.
» While other methods can easily lead to performance
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e Soft version of a word, w is a distribution over the
vocabulary of |V| words:

- PW) = (p1(W), (W), .., Py (W)

* The embedding of the soft word w is:

= PW)E =3 p;W)E;

* We Ieverage a pre-trained language model to
compute P(w):

—DPj (x¢) = LM(Wj‘x<t)
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Depth Growing for Neural Machine Translation
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* Training deep networks has been widely adopted  Stage-1: The bottom modules (enc; and dec,) are
and has shown effectiveness in image recognition, trained and subsequently fixed.
QA and text classification. » Stage-2: Only the top modules (enc, and dec,) are
 Very deep and effective model training still remains trained and optimized.
Challenging for NMT. Discussion:
9.2 | » Training complexity is reduced compared with jointly training, which
' R eases optimization difficulty.
sportec » We only h “single” model to b I-trained d
| . e only nave a sSsingie maodael grown to be a well-traine eeper
29.0 28.91 Sl ¥rocucre one, which outperforms the “ensemble” models.
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28 9. The test performances of WMT14 En—De and En—Fr.
28 0 . Model En—De En—Fr
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. f
» Instead of working on RNN/CNN structures, we Transtormer (6B) 28.40  41.80
propose a novel approach to construct and train ITranstormer (6B) 28.91 42.69
deeper NMT models based on Transformer. Transtormer (3B) 28.75  42.63
Transformer (10B) 28.63 42.73
Transparent Attn (16B)T  28.04 —
Ours (8B) 29.92 43.27
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[3] Probability Probability
.‘"'s'éf't??ﬁé';"': dagger: results reported in previous works
[2] {:117.'35?.:3 — We achieve 30.07 BLEU score on En—De with 10 blocks (10B).
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— Ensemble Learning (Ensemble): separately train 2 models and
Decod
[1] XN ensemble their decoding results.
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L . Baseline DS (8B) DS (8B) EnsembleEnsemble Ours
S1,t — decl(y{ta attnl(hl))a Vit & [ly]a (2) (GBI) scratch  grow  (6B/6B) (6B/8B) (8uB)
Sot = deco(Yet + 81.<t,attng(hs)), (3) The test performances of WMT14 En—De translation task.
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