Soft Contextual Data Augmentation for Neural Machine Translation

1,*Fei Gao, ^{2,*}Jinhua Zhu, ³Lijun Wu, ⁴Yingce Xia, ⁴Tao Qin,
 ¹Xueqi Cheng, ²Wengang Zhou and ⁴Tie-Yan Liu
 ¹Institute of Computing Technology, Chinese Academy of Sciences;
 ²University of Science and Technology of China;
 ³Sun Yat-sen University; ⁴Microsoft Research Asia

1. Motivation

- Study of data augmentation in natural language tasks is still very limited.
- Current random transformation methods such as Swap, Dropout and Blank can result in significant changes in semantics.
- Recent contextual augmentation methods can not utilize all potential candidates.
- We propose soft contextual data augmentation for NMT by leveraging language models, which can not only keep semantics for source sentences, but also leverage all possible augmented data.

2. Framework

 We show the architecture of our soft contextual data augmentation approach in encoder side for source sentences. The decoder side for target sentences is similar.

3. Soft word

• Soft version of a word, w is a distribution over the vocabulary of |V| words:

$$-P(w) = (p_1(w), p_2(w), ..., p_{|V|}(w))$$

• The embedding of the soft word w is:

$$-e_w = P(w)E = \sum_{j=0}^{|V|} p_j(w)E_j$$

• We leverage a pre-trained language model to compute P(w):

$$-p_j(x_t) = LM(w_j|x_{< t})$$

4. Two-stage Training

- Stage-1: First use the same training corpus of the NMT model to pretrain language models.
- Stage-2: Then randomly choose words in the training data with probability γ and replace it by its soft version to train one NMT model.

5. Experiments

Overall Results

➤ IWSLT14 {De, Es, He}->En (transformer_base) and WMT14 En->De (transformer_big).

	IWSLT			WMT
'	De → En	$\mathbf{Es} \to \mathbf{En}$	He → En	En → De
Base	34.79	41.58	33.64	28.40
+Swap	34.70	41.60	34.25	28.13
+Dropout	35.13	41.62	34.29	28.29
+Blank	35.37	42.28	34.37	28.89
+Smooth	35.45	41.69	34.61	28.97
$+LM_{sample}$	35.40	42.09	34.31	28.73
Ours	35.78	42.61	34.91	29.70

Table 1: BLEU scores on four translation tasks.

- Analysis (On IWSLT14 De->En)
 - ➤ Our method can observe a consistent BLEU improvement within a large probability range.
 - > While other methods can easily lead to performance drop over the baseline if $\gamma > 0.15$.

Code

https://github.com/teslacool/SCA

Contact

Fei Gao: gaofei17b@ict.ac.cn

Jinhua Zhu: teslazhu@mail.ustc.edu.cn

Depth Growing for Neural Machine Translation

¹Lijun Wu, ²Yiren Wang, ³Yingce Xia, ³Fei Tian, ³Fei Gao, ³Tao Qin, ¹Jianhuang Lai and ³Tie-Yan Liu

¹Sun Yat-sen University; ²University of Illinois at Urbana-Champaign; ³Microsoft Research Asia

1. Motivation

- Training *deep networks* has been widely adopted and has *shown effectiveness* in image recognition, QA and text classification.
- Very deep and effective model training still *remains* challenging for NMT.

• Instead of working on RNN/CNN structures, we propose a novel approach to construct and train deeper NMT models based on Transformer.

2. Framework

3. Depth Growing

$$h_1 = \operatorname{enc}_1(x); \ h_2 = \operatorname{enc}_2(x + h_1);$$
(1)

$$s_{1,t} = \operatorname{dec}_1(y_{< t}, \operatorname{attn}_1(h_1)), \ \forall t \in [l_y];$$
(2)

$$s_{2,t} = \operatorname{dec}_2(y_{< t} + s_{1,< t}, \operatorname{attn}_2(h_2)),$$
(3)

- [1] Cross-module residual connections
- [2] Hierarchical encoder-decoder attention
- [3] Depth-shallow decoding

4. Two-stage Training

- Stage-1: The bottom modules (enc_1 and dec_1) are trained and subsequently fixed.
- Stage-2: Only the top modules (enc_2 and dec_2) are trained and optimized.

Discussion:

- > Training complexity is reduced compared with jointly training, which eases optimization difficulty.
- ➤ We only have a "single" model grown to be a well-trained deeper one, which outperforms the "ensemble" models.

5. Experiments

Overall Results

WMT14 En→De and WMT14 En→Fr

The test performances of WMT14 En→De and En→Fr.

Model	En→De	En→Fr
Transformer (6B) [†]	28.40	41.80
Transformer (6B)	28.91	42.69
Transformer (8B)	28.75	42.63
Transformer (10B)	28.63	42.73
Transparent Attn (16B) [†]	28.04	
Ours (8B)	29.92	43.27

dagger: results reported in previous works

– We achieve **30.07** BLEU score on En \rightarrow De with 10 blocks (10B).

Analysis

- Directly Stacking (DS): extend the 6-block baseline to 8-block by directly stacking 2 blocks.
- Ensemble Learning (Ensemble): separately train 2 models and ensemble their decoding results.

The test performances of WMT14 En→De translation task.

Code

- https://github.com/apeterswu/Depth_Growing_NMT Contact
- wulijun3@mail2.sysu.edu.cn (SYSU)
- yingce.xia@microsoft.com (MSRA)