Machine Translation with Weakly Paired Documents

¹Lijun Wu, ²Jinhua Zhu, ³Fei Gao, ⁴Di He, ⁵Tao Qin, ¹Jianhuang Lai and ⁵Tie-Yan Liu

1. Introduction

- NMT achieves strong performance in rich-resource language pairs with large amount of parallel data.
- Low-resource language pairs have much lower translation accuracy due to the lack of bilingual sentence pairs.
- Unsupervised machine translation has been explored with monolingual data only.
- In reality, large amount of weakly paired bilingual documents can be leveraged.
- We propose to boost the unsupervised machine translation with weakly paired documents using two innovated components.
- We achieve strong performances in various language pairs and reduce the gap between supervised and unsupervised translation up to 50%.

2. Approach

- We propose to leverage weakly paired bilingual documents from **Wikipedia**.
- Notations:
 - $ightharpoonup D = \{(d_i^X, d_i^Y)\}$ as the set of weakly paired documents (e.g., two crosslingual linked Wikipedia pages)
 - n_i^X, n_i^Y are the number of sentences in paired documents d_i^X, d_i^Y , usually $n_i^X! = n_i^Y$
 - $\succ x$, y are the sentences of language X, Y

♦ Mining implicitly aligned sentence pairs

- $\succ e_w$, cross-lingual word embedding from MUSE
- $\succ p_w$, the estimated frequency from the document
- \triangleright a, predefined parameter and $\widehat{e_s}$ is the weighted sentence embedding
- $\succ u_1$, the first principal component from all sentence embedding

$$\hat{e}_s = \sum_{w \in s} \frac{a}{a + p(w)} e_w,
u_1 \leftarrow PCA(E),$$

- $e_s = \hat{e}_s u_1 u_1^T \hat{e}_s.$ Select sentence pairs by $sim(s^X, s^Y) = \frac{\langle e_{sX}, e_{sY} \rangle}{\|e_{sX}\| \|e_{sY}\|}$ larger than c_1 , also ensure this pair is larger than others pairs by c_2
- > The implicitly aligned sentence training loss of two-sides is

$$L_p(S;\theta) = -\frac{1}{|S|} \sum_{(s^X, s^Y) \in S} \log P_{X \to Y}(s^Y | s^X; \theta)$$
$$-\frac{1}{|S|} \sum_{(s^X, s^Y) \in S} \log P_{Y \to X}(s^X | s^Y; \theta).$$

♦ Aligning Topic Distribution

- \triangleright Translate d_i^X to $\widehat{\mathbf{d}_i^Y}$
- ightharpoonup Evaluate the word distribution between d_i^Y and $\widehat{d_i^Y}$
- Feed pair $(s_{i,k}^X, \widehat{s_{i,k}^Y})$ into NMT model and calculate $P(w^Y; d_i^X)$ by $P(w_{i,k,t}^Y | s_{i,k}^X, \hat{s}_{i,k,< t}^Y) \sim P_{X \to Y}(w_t^Y | s_{i,k}^X, \hat{s}_{i,k,< t}^Y; \theta),$

$$P(w^Y; d_i^X, \theta) \propto \sum P(w_t | \hat{s}_{i,k}, s_{i,k,< t}, \theta),$$

> The ground-truth document word distribution is

$$P(w^Y; d_i^Y) = \frac{\#w \text{ in } d_i^Y}{\#token \text{ in } d_i^Y}.$$

- The document alignment loss of $X \to Y$ is $L_d(D; \theta, X \to Y) =$
 - $\frac{1}{|D|} \sum_{(d_i^X, d_i^Y) \in D} KL(P(w^Y; d_i^Y) || P(w^Y; d_i^X, \theta)).$
- > The detailed two-sides loss

 $L_d(D;\theta) = L_d(D;\theta,X\to Y) + L_d(D;\theta,Y\to X).$

3. Algorithm

The overall loss function is

$$L = L_m(M; \theta) + \alpha L_p(S; \theta) + \beta L_d(D; \theta).$$

Algorithm 1 Training Algorithm

Require: Initial translation model with parameter θ ; monolingual dataset M, implicitly aligned sentence pairs dataset S, weakly paired documents dataset D; optimizer Opt

- 1: while not converged do
- 2: Randomly sample a mini-batch monolingual sentences from M, implicitly aligned sentence pairs from S and weakly paired documents from D
- 3: Calculate loss L_m , L_p and L_d
- 4: Update θ by minimizing the overall objective L using optimizer Opt
- 5: end while
- L_m is the original unsupervised NMT training loss

4. Experiments

Data Statistics

Language	#Wiki Documents
English	5,684,240
German	2,201,782
Spanish	1,389,469
Romanian	387,627

Task	#Document Pairs
English-German	948,631
English-Spanish	836,564
English-Romanian	87,289

Overall Results

Unsupervised Method	En→De	De→En	En→Es	Es→En	En→Ro	Ro→En
Lample et al. (2017) Yang et al. (2018)	9.6 10.9	13.3 14.6	-	-	-	-
NMT (Lample et al., 2018) PBSMT (Lample et al., 2018) PBSMT + NMT (Lample et al., 2018)	17.2 17.9 20.2	21.0 22.9 25.2	19.7 - -	20.0	21.2 22.0 25.1	19.5 23.7 23.9
NMT + First Wiki Sentence NMT + Document Translation	16.3 12.0	19.3 14.9	17.3 14.5	18.3 15.3	19.4 16.8	18.1 15.7
Ours	24.2	30.3	28.1	27.6	30.1	27.6
Supervised NMT	33.6	38.2	33.2	32.9	32.8	35.4

5. Studies

Analysis

Ablation Study

Our Method	En→De	De→En
with L_p and L_d without L_d without L_p	24.2 22.9 18.5	30.3 28.7 23.3

Impact of Sentence Quality

	English-German				
$\mathbf{c_1}/\mathbf{c_2}$	0.0	0.1	0.2		
0.70	257,947	199,965	132,403		
0.75	100,497	84,271	58,814		

Contact

wulijun3@mail2.sysu.edu.cn

