

Efficient Sequence Learning with Group Recurrent Networks

^{1,2}Fei Gao, ³Lijun Wu, ²Li Zhao, ²Tao Qin, ¹Xueqi Cheng and ²Tie-Yan Liu

¹ Chinese Academy of Sciences ² Microsoft Research ³Sun Yat-sen University

1. Motivation

Recurrent Neural Networks have been widely used for sequence learning, like LM, NMT. However, successful RNN models are usually big, which are time-consuming and memory-costly. Our work aims to design an efficient RNN architecture for sequence learning with better parameter efficiency. Main approach (an divide-and-conquer approach):

- 1. Divide the hidden states into different disjoint groups to learn intra-group temporal correlation efficiently
- 2. Rearrange the representation to recover the inter-group temporal correlation with almost no cost

2. Architecture

- a. Group recurrent layer for *intra-group* correlation
 - * Split input and hidden states in to K disjoint groups
 - * Each group performs recurrent learning independently
 - K times more efficient w.r.t parameter and computation
- Representation ability drops since failing to capture the inter-group correlation
- b. Representation rearrangement layer for inter-group correlation
 - * rearrange the hidden representation, to make sure the subsequent layers, or time steps, can see features from all input groups

* The operation is parameter-free and simple

3. Experiments

Language model: PTB dataset				
Model	Parameters	Validation Set	Test Set	
LSTM (Zaremba et al., 2014)	66M	82.2	78.4	
2 Group LSTM	48M	82.0	78.6	
LSTM + BD (Gal and Ghahramani, 2016)	66M	77.9	75.2	
2 Group LSTM + BD	48M	79.9	75.8	
LSTM + WT (Press and Wolf, 2017)	51M	77.4	74.3	
2 Group LSTM + WT	33M	76.8	73.3	
LSTM + BD + WT (Press and Wolf, 2017)	51M	75.8	73.2	
2 Group LSTM + BD + WT	33M	75.6	71.8	

The effect of representation rearrangement (on PTB dataset)

	(0::::	
Group	without	with (improvement)
2	82.5	78.6 (+4.7%)
4	86.6	82.6 (+4.6%)

NMT: De-En dataset

Model	Params	BLEU
NPMT (Huang et al., 2017)	Unclear	30.08
RNNSearch	6.0M	31.03
2 Group RNNSearch	4.3M	31.08
4 Group RNNSearch	3.4M	30.96
8 Group RNNSearch	3.0M	30.73
16 Group RNNSearch	2.7M	30.35

NMT: En-De dataset

Model	Params	BLEU
DeepLAU (Wang et al., 2017)	Unclear	23.80
GNMT (Wu et al., 2016)	160M [‡]	24.61
2 Group RNNSearch	111M	23.93
4 Group RNNSearch	78M	23.61

Abstractive summarization: Gigaword dataset

Model	Params	R-1	R-2	R-L
(Rush et al., 2015)	Unclear	29.8	11.9	26.9
(Luong et al., 2015)	Unclear	33.1	14.4	30.7
(Chopra et al., 2016)	Unclear	33.8	15.9	31.1
RNNSearch	24.1M	34.4	15.8	31.8
2 Group RNNSearch	17.0M	34.8	15.9	32.1
4 Group RNNSearch	13.5M	34.3	15.7	31.6
8 Group RNNSearch	11.8M	34.3	15.6	31.6
16 Group RNNSearch	10.9M	33.8	15.3	31.2

Number of parameters

We conduct extensive experiments on language modeling, neural machine translations and abstractive summarization, showing that our method achieves competing performance with much less computing

Contact

resource.

feiga@microsoft.com