

Segment, Mask, and Predict: Augmenting Chinese Word Segmentation with Self-Supervision

Mieradilijiang Maimaiti¹, Yang Liu¹, Yuanhang Zheng¹, Gang Chen¹, Kaiyu Huang², Ji Zhang³, Huanbo Luan¹, Maosong Sun¹

Department of Computer Science and Technology, Tsinghua University ²School of Computer Science, Dalian University of Technology ³Alibaba DAMO Academy

E-mail: meadljmm15@mails.tsinghua.edu.cn

Paper

Code

Blog

Introduction

- Chinese word segmentation (CWS) is considered an essential task, which will accurately represent semantic information of Chinese NLP tasks.
- Recent SOTA approaches utilize the pre-trained models (PTM) to improve the quality of CWS. However, the CWS methods based on the PTM only utilize the large-scale annotated data to finetune the parameters. It omits much-generated information of the training step.
- Besides, the annotated data has some incorrect labels due to lexical diversity in Chinese, therefore the robustness of methods is quite important for the CWS.
- To address these issues, we propose a self-supervised CWS approach to enhance the performance of CWS model. We exploit the revised masked language model as a predictor to improve the segmentation model, and leverage an improved version of minimum risk training (MRT) to enhance the segmentation.

Methodology

Model Architecture

Overall Algorithm

Algorithm 1 Self-supervised Word Segmentation	
Input : Original sequence $D = \{\mathbf{x}^{(s)}\}_{s=1}^{S}$.	
Output : Original sequence $D_p^{(t)}$.	
1: Train Mask-Predictor $M(\gamma)$ based on D .	
2: Train Segmenter $S(\theta^{(o)})$ based on D .	
3: Employ $S(\theta^{(o)})$ to segment D and achieve segmented sequence $D^{(t)}$.	
4: Mask $D^{(t)}$ to obtain the masked sequence $D_m^{(t)}$ with the strategy.	
5: Exploit $M(\gamma)$ to achieve predicted sequence $D_p^{(t)}$ based on $D^{(t)}$.	
6: Calculate the accuracy by comparing $D_p^{(t)}$ and $D^{(t)}$ as a reward.	
7: Update the $S(\theta^{(o)})$ to $S(\theta^{(n)})$.	

Revised MLM as Predictor

Masked Input[M] [M] 喜欢吃巧克力。 小明喜欢[M] 吃巧克力。 小明喜欢[M] 巧克力。 小明喜欢吃[M] [M] 力。 小明喜欢吃巧[M] [M]。 小明喜欢吃巧克力[M]	Segged Seq.	小明 喜欢 吃 巧克力。
	Masked Input	小明[M][M]吃巧克力。 小明喜欢[M]巧克力。 小明喜欢吃[M][M]力。 小明喜欢吃巧[M][M]。

Training Procedure with Improved MRT

$$J(\theta) = \sum_{\mathbf{x} \in \mathbf{X}} \left(\sum_{\mathbf{y} \in S(\mathbf{x})} Q(\mathbf{y}|\mathbf{x}; \theta, \alpha) q(\mathbf{y}, \mathbf{x}) - \lambda \sum_{\mathbf{y}' \in S(\mathbf{x})} P(\mathbf{y}'|\mathbf{x}; \theta)^{\alpha} \right)$$

Experiments

• Results of Single Criterion Learning

Methods	SIGHAN05				SIGHAN08		OTHER		
	MSRA	PKU	AS	CITYU	CTB	SXU	CNC	UDC	ZX
Chen et al. (2017)	95.84	93.30	94.20	94.07	95.30	95.17			
Zhou et al. (2017)	97.80	96.00		_	96.20	_	_		
Yang et al. (2017)	97.50	96.30	95.70	96.90	96.20				
He et al. (2018)	97.29	95.22	94.90	94.51	95.21	95.78	97.11	93.98	95.57
Gong et al. (2019)	96.46	95.74	94.51	93.71	97.09	95.57	_	_	
LSTM+BEAM	97.10	95.80	95.30	95.60	96.10	95.95	96.10	96.20	96.30
LSTM+CRF	98.10	96.10	96.00	96.80	96.30	<u>96.55</u>	<u>96.61</u>	96.00	96.40
BERT	<u>96.91</u>	95.34	96.47	<u>97.10</u>	97.27	<u>96.40</u>	<u>96.66</u>	<u>97.23</u>	96.49
SELFATT+SOFT	97.60	95.50	95.70	96.40	<u>97.28</u>	<u>96.60</u>	<u>96.88</u>	<u>97.12</u>	<u>96.50</u>
BERT+LTL	<u>97.53</u>	96.23	<u>97.03</u>	<u>97.63</u>	<u>97.34</u>	<u>96.65</u>	<u>96.89</u>	<u>97.51</u>	<u>96.72</u>
Ours	98.12	96.24	97.30	97.83	97.45	96.97	97.25	97.74	96.82

• Results of Multiple Criteria Learning

Methods	SIGHAN05				SIGHAN08		OTHER		
	MSRA	PKU	AS	CITYU	СТВ	SXU	CNC	UDC	ZX
Chen et al. (2017)	96.04	94.32	94.64	95.55	96.18	96.04	_	_	_
He et al. (2018)	97.35	95.78	95.47	95.60	95.84	96.49	97.00	94.44	95.72
Gong et al. (2019)	97.78	96.15	95.22	96.22	97.26	97.25	_	_	_
BERT	97.22	96.06	<u>97.07</u>	<u>97.39</u>	<u>97.36</u>	<u>96.81</u>	<u>96.71</u>	97.48	<u>96.60</u>
BERT+LTL	<u>96.67</u>	<u>96.30</u>	<u>97.16</u>	<u>97.72</u>	<u>97.38</u>	<u>96.90</u>	<u>97.10</u>	<u>97.61</u>	<u>96.81</u>
Ours	98.19	96.32	97.43	97.80	97.66	97.03	97.34	98.25	97.08

Results on Noisy Datasets

Methods	SIGHAN05				SIGHAN08		OTHER		
	MSRA	PKU	AS	CITYU	CTB	SXU	CNC	UDC	ZX
LSTM+BEAM	96.86	95.70	95.17	95.35	95.89	95.83	95.89	96.07	96.18
LSTM+CRF	97.89	95.89	95.88	96.67	96.19	96.47	96.49	95.85	96.25
BERT	96.78	95.20	96.28	97.01	97.14	96.24	96.51	97.11	96.30
SELFATT+SOFT	97.47	95.40	95.57	96.29	97.16	96.49	96.61	97.08	96.33
BERT+LTL	97.42	96.15	96.76	97.52	97.27	96.55	96.69	97.40	96.53
Ours	97.93	96.18	97.12	97.68	97.32	96.83	97.12	97.63	96.67