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• Quality estimation (QE) for machine translation (MT) aims to 
evaluate the quality of machine-translated sentences without 
references.

• QE can reduce human efforts in post-editing (Specia, 2011).
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• QE data with human-annotated quality labels are difficult to obtain 
in practice.

• Thus, various studies have explored unsupervised QE.
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Previous Work and Challenges
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• Comparison of advantages and disadvantages of previous
unsupervised QE methods (Popović, 2012; Etchegoyhen et al., 2018; 
Zhang et al., 2020; Zhou et al., 2020; Fomicheva et al., 2020; Tuan et 
al., 2021)

Method Advantages Disadvantages

Feature-based Simple and effective Limited to 
sentence-level

Synthetic data-
based

Suitable for both sentence-
and word-level

Affected by noise
Complex



Task Description

5

• QE aims to predict the quality scores of the machine-translated 
sentences (for sentence-level) or detect the erroneous words in the 
target sentences (for word-level) without using references.

• The labels are generated by comparing the target sentences with 
their post-editions using the TER tool (Snover et al., 2005).

• For word-level QE, each target word is annotated with “OK” or 
“BAD”, where “OK” denotes correct and “BAD” denotes erroneous.

Source 我喜欢音乐 。

Target I    like  songs .

Post-Edition I    like  music  .

Word-Level QE OK  OK BAD  OK



Task Description
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• For sentence-level QE, target sentences are annotated with HTER 
scores, which measure the percentage of human edits to correct the 
target sentences:

HTER =
number of edits

number of words in the post−edition

• Sentence-level scores are calculated based on the word-level errors 
in the target sentences, and thus they can be approximately 
regarded as a summary of word-level tags.

Source 我喜欢音乐 。

Target I    like  songs .

Post-Edition I    like  music  .

Word-Level QE OK  OK BAD  OK

Sentence-Level QE 0.25



Methodology
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• We mask some target words and use the source sentence and the 
remaining target words to recover the masked words.

• A target word is correct if it can be successfully recovered, 
otherwise it tends to be erroneous.

• We obtain sentence-level scores by summarizing word-level 
predictions.

我 喜欢 音乐 。Source Sentence

I like songs .Target Sentence
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• We mask some target words and use the source sentence and the 
remaining target words to recover the masked words.

• A target word is correct if it can be successfully recovered, 
otherwise it tends to be erroneous.

• We obtain sentence-level scores by summarizing word-level 
predictions.

我 喜欢 音乐 。Source Sentence

I like songs .Target Sentence

I music



Model Architecture
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• Our method is based on the multilingual BERT (Devlin et al., 2019). 

• The input is the concatenation of the source sentence and the 
partially masked target sentence.

• We use a Transformer encoder to recover the masked target words.

我 喜 欢 音 乐 。 [SEP] [MASK] like [MASK] . [SEP][CLS]

Transformer

Source Sentence Target Sentence

I music



Training Process
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• The model is trained on authentic parallel corpora.

• During training, we mask some words in the target sentence, and 
the model is required to recover the masked words.

我 喜欢 音乐 。Source Sentence

I like music .Target Sentence
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• The model is trained on authentic parallel corpora.

• During training, we mask some words in the target sentence, and 
the model is required to recover the masked words.

我 喜欢 音乐 。Source Sentence

I like music .Target Sentence

I music



Inference Process
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• During inference, we detect erroneous target words using the 
probability of successful recovery.

• For sentence-level QE, we calculate the quality score by averaging 
the quality scores over all target words.

我 喜欢 音乐 。Source Sentence

I like songs .Target Sentence
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• During inference, we detect erroneous target words using the 
probability of successful recovery.

• For sentence-level QE, we calculate the quality score by averaging 
the quality scores over all target words.
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Inference Process
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• During inference, we detect erroneous target words using the 
probability of successful recovery.

• For sentence-level QE, we calculate the quality score by averaging 
the quality scores over all target words.

我 喜欢 音乐 。Source Sentence

I like songs .Target Sentence

0.8 0.1

OK BAD



Inference Process
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• To further improve the model’s performance, we utilize Monte-
Carlo (MC) Dropout (Gal and Ghahramani, 2016), which can extract 
model uncertainty, and is proven conducive to the performance of 
unsupervised QE models (Fomicheva et al., 2020).



Main Results
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• Comparison with SyntheticQE (Tuan et al., 2021)

Method

En-De En-Ru

Sentence-Level Word-Level Sentence-Level Word-Level

Dev Test Dev Test Dev Test Dev Test

Results of Supervised Models

Supervised 0.473 0.507 0.366 0.396 0.495 0.517 0.410 0.448

Results of Single Unsupervised Models

SyntheticQE-MT 0.478 0.425 0.349 0.338 0.201 0.233 0.263 0.265

SyntheticQE-MLM 0.386 0.368 0.318 0.309 0.204 0.284 0.181 0.208

Ours 0.504 0.463 0.381 0.383 0.242 0.435 0.318 0.338

Results of Ensemble Unsupervised Models

SyntheticQE-MT Ensemble 0.488 0.428 0.360 0.339 0.212 0.246 0.274 0.297

SyntheticQE-MLM Ensemble 0.407 0.379 0.318 0.307 0.210 0.299 0.185 0.216

SyntheticQE-MT+MLM 0.508 0.460 0.373 0.362 0.247 0.317 0.262 0.286

Ours Ensemble 0.518 0.462 0.395 0.385 0.248 0.453 0.318 0.359



Main Results

20

• Comparison with feature-based unsupervised QE methods

Method
En-Lv En-De En-Ru

SMT NMT NMT NMT

uMQE (Etchegoyhen et al., 2018) 0.385 0.550 0.375 0.243

BERTScore (Zhang et al., 2020) 0.176 0.221 -0.101 0.093

BERTScore++ (Zhou et al., 2020) 0.213 0.155 -0.073 0.069

NMT-QE (Fomicheva et al., 2020) 0.540 0.580 0.452 0.372

Ours 0.560 0.590 0.463 0.435



Analysis
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• Precision-Recall Curve

• Precision of SyntheticQE-MT is relatively low when recall < 0.2.

• Precision of SyntheticQE-MLM is relatively low when recall > 0.2.

• Our method obtains relatively high precision whenever the 
recall is low or high.



Analysis
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• In SyntheticQE-MT, the target side of the synthetic data is produced 
by MT models.

• More words may be labeled with “BAD” in synthetic data since 
references are less similar to machine-translated sentences than 
post-editions (Snover et al., 2005).

Source 昨天我吃了一个蛋糕。

Target Yesterday I     ate    a   cakes                  .

Reference I     ate    a    cake yesterday .

Synthetic Labels BAD    OK   OK OK BAD                  OK

Post-Edition Yesterday I     ate    a    cake                    .

Authentic Labels OK     OK OK OK BAD                 OK



Analysis
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• In SyntheticQE-MLM, the target side of the synthetic data is 
produced by MLMs.

• Sentences rewritten by MLM usually contain catastrophic errors, 
which rarely appear in machine-translated sentences (Tuan et al., 
2021).

Source 我喜欢音乐。

Reference I like music .

Masked Reference I like [MASK] .

Synthetic Target I like reading .



Analysis
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• Our self-supervised QE method does not rely on synthetic data.

• Our method is not affected by the noise and achieves better results 
whenever the recall is low or high.



Analysis
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• Case study (erroneous word “Schnappschüsse” is corrected to 
“Schnappschüssen” in the post-edition)

Source switch between the snapshots to find the settings you like best .

Target & Golden wechseln Sie zwischen den Schnappschüsse , um die gewünschten 
Einstellungen zu finden .

SyntheticQE-MT wechseln Sie zwischen den Schnappschüsse , um die gewünschten
Einstellungen zu finden .

SyntheticQE-MLM wechseln Sie zwischen den Schnappschüsse , um die gewünschten 
Einstellungen zu finden .

Ours wechseln Sie zwischen den Schnappschüsse , um die gewünschten 
Einstellungen zu finden .



Conclusion and Future Work
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• In this work, we propose a self-supervised QE method.

• The central idea is to perform QE by recovering masked target 
words.

• This method is easy to implement and is not affected by noisy 
synthetic data.

• Experimental results show that our method outperforms previous 
unsupervised methods.

• In the future, we plan to extend our method to phrase- and 
document-level tasks.
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